Deterministic Algorithm and Faster Algorithm for Submodular Maximization Subject to a Matroid Constraint

We study the problem of maximizing a monotone submodular function subject to a matroid constraint, and present for it a deterministic non-oblivious local search algorithm that has an approximation guarantee of 1-1/e-\epsilon (for any \epsilon > 0 ) and query complexity of \tilde{O}_{\epsilon}(nr)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings / annual Symposium on Foundations of Computer Science S. 700 - 712
Hauptverfasser: Buchbinder, Niv, Feldman, Moran
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 27.10.2024
Schlagworte:
ISSN:2575-8454
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract We study the problem of maximizing a monotone submodular function subject to a matroid constraint, and present for it a deterministic non-oblivious local search algorithm that has an approximation guarantee of 1-1/e-\epsilon (for any \epsilon > 0 ) and query complexity of \tilde{O}_{\epsilon}(nr) , where n is the size of the ground set and r is the rank of the matroid. Our algorithm vastly improves over the previous state-of-the-art 0.5008-approximation deterministic algorithm, and in fact, shows that there is no separation between the approximation guarantees that can be obtained by deterministic and randomized algorithms for the problem considered. The query complexity of our algorithm can be improved to \tilde{O}_{\epsilon}(n+\hat{r}\sqrt{{n}}) using randomization, which is nearly-linear for r=O(\sqrt{n}) , and is always at least as good as the previous state-of-the-art algorithms.
AbstractList We study the problem of maximizing a monotone submodular function subject to a matroid constraint, and present for it a deterministic non-oblivious local search algorithm that has an approximation guarantee of 1-1/e-\epsilon (for any \epsilon > 0 ) and query complexity of \tilde{O}_{\epsilon}(nr) , where n is the size of the ground set and r is the rank of the matroid. Our algorithm vastly improves over the previous state-of-the-art 0.5008-approximation deterministic algorithm, and in fact, shows that there is no separation between the approximation guarantees that can be obtained by deterministic and randomized algorithms for the problem considered. The query complexity of our algorithm can be improved to \tilde{O}_{\epsilon}(n+\hat{r}\sqrt{{n}}) using randomization, which is nearly-linear for r=O(\sqrt{n}) , and is always at least as good as the previous state-of-the-art algorithms.
Author Buchbinder, Niv
Feldman, Moran
Author_xml – sequence: 1
  givenname: Niv
  surname: Buchbinder
  fullname: Buchbinder, Niv
  email: niv.buchbinder@gmail.com
  organization: Tel Aviv University,Department of Statistics and Operations Research,Tel-Aviv,Israel
– sequence: 2
  givenname: Moran
  surname: Feldman
  fullname: Feldman, Moran
  email: moranfe@cs.haifa.ac.il
  organization: University of Haifa,Department of Computer Science,Haifa,Israel
BookMark eNpNj01OwzAUhA0Cibb0Bl34Ail-8V-yrAItSEVdFNbVS2JTV4mNHFcCTk8QLNjMSPONRpopufLBG0IWwJYArLxb76q9glypZc5ysWSMSXZB5qUuC85BgtICLskkl1pmhZDihkyH4cSYGHtiQo73JpnYO--G5Bq66t5CdOnYU_QtXeMwwn-hDZHuz3Uf2nOHkT7jh-vdFyYX_E9-Mk2iKVAcSYrBtbQKfkgRnU-35NpiN5j5n8_I6_rhpXrMtrvNU7XaZg60SpnGXNVatTB-krVFJXkrW25rBgJQlUI3vOGiUdLa8aBoSpvXqOWoYApb8xlZ_O46Y8zhPboe4-cBmJYKNOPfI6RbZw
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/FOCS61266.2024.00050
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Computer Science
EISBN 9798331516741
EISSN 2575-8454
EndPage 712
ExternalDocumentID 10756170
Genre orig-research
GroupedDBID --Z
6IE
6IH
6IK
ALMA_UNASSIGNED_HOLDINGS
CBEJK
RIE
RIO
ID FETCH-LOGICAL-i176t-7a26b76d16125bfa653d5d3fb0141a6947c3c34c65ff8334c9f2ba75f2b1e8fb3
IEDL.DBID RIE
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001419526400041&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 03:04:36 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i176t-7a26b76d16125bfa653d5d3fb0141a6947c3c34c65ff8334c9f2ba75f2b1e8fb3
PageCount 13
ParticipantIDs ieee_primary_10756170
PublicationCentury 2000
PublicationDate 2024-Oct.-27
PublicationDateYYYYMMDD 2024-10-27
PublicationDate_xml – month: 10
  year: 2024
  text: 2024-Oct.-27
  day: 27
PublicationDecade 2020
PublicationTitle Proceedings / annual Symposium on Foundations of Computer Science
PublicationTitleAbbrev FOCS
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0040504
Score 2.299616
Snippet We study the problem of maximizing a monotone submodular function subject to a matroid constraint, and present for it a deterministic non-oblivious local...
SourceID ieee
SourceType Publisher
StartPage 700
SubjectTerms Approximation algorithms
Complexity theory
Computer science
deterministic algorithm
fast algorithm
matroid constraint
Search problems
submodular maximization
Title Deterministic Algorithm and Faster Algorithm for Submodular Maximization Subject to a Matroid Constraint
URI https://ieeexplore.ieee.org/document/10756170
WOSCitedRecordID wos001419526400041&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagYoClUIp4ywNrII4dOxlRIWJpqQRI3So_aSSaoDRF_Hx8aVq6MLDE1nmwZMu-k_M9ELpJFWEqNYBU0zRgkrEgcdQGIVNEJlZaIldmE2I0SiaTdNyS1RsujLW2AZ_ZW-g2__JNqZfwVOZPuIhBQHwX7QrBV2St9bXrC4-Qtdw4EqZ32fPgxWdvDjCECBSyQ6DWbzmoNAkk6_5z6kPU_6Xi4fEmyRyhHVv0UHftxYDbo9lDB8ON_uriGM0eWpRLI8OM7z_eyyqvZ3MsC4MzCeIIW0Fft2J_gcxLA5hUPJTf-bylZ0IcXmpwXWLpR-qqzA0Gl8_GW6Luo7fs8XXwFLSeCkFOBK8DISOuBDcEKhvlJI-piQ11CgCfkqdMaKop0zx2LqG-k7pISRH7L7GJU_QEdYqysKcIRyy2iZQ6jKVlPtMr7nyrImYiqYl2Z6gP6zj9XMlmTNdLeP5H_ALtw1ZBYojEJerU1dJeoT39VeeL6rrZ7B8yL61-
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA86BfUynRO_zcFrtU3TtD3KtEzc5sAJ3kY-XcG10nXin29e181dPHhpwsshkJC8R_r7QOg6Fh4VsQKkmvQdyil1IuNrx6XC45Hm2uMLs4lwMIje3uJhTVavuDBa6wp8pm-gW_3LV7mcw1OZPeFhAALim2groJS4C7rW8uK1pYdLa3ac58a3yXPnxeZvBkAEAhrZLpDr1zxUqhSSNP85-T5q_5Lx8HCVZg7Qhs5aqLl0Y8D14Wyhvf5KgXV2iCb3Nc6lEmLGdx_veZGWkynmmcIJB3mEtaCtXLG9Qqa5AlQq7vPvdFoTNCEObzW4zDG3I2WRpwqDz2flLlG20WvyMOp0ndpVwUm9kJVOyAkTIVMe1DbCcBb4KlC-EQD55CymofSlTyULjIl824kNETwM7NfTkRH-EWpkeaaPESY00BHn0g24pjbXC2ZsKwhVhEtPmhPUhnUcfy6EM8bLJTz9I36Fdrqjfm_cexw8naFd2DZIEyQ8R42ymOsLtC2_ynRWXFYb_wNiW7DF
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+%2F+annual+Symposium+on+Foundations+of+Computer+Science&rft.atitle=Deterministic+Algorithm+and+Faster+Algorithm+for+Submodular+Maximization+Subject+to+a+Matroid+Constraint&rft.au=Buchbinder%2C+Niv&rft.au=Feldman%2C+Moran&rft.date=2024-10-27&rft.pub=IEEE&rft.eissn=2575-8454&rft.spage=700&rft.epage=712&rft_id=info:doi/10.1109%2FFOCS61266.2024.00050&rft.externalDocID=10756170