Exploring House Price Forecasting through Machine Learning and Data Preprocessing

Predicting house prices accurately is crucial in real estate, influencing decisions for buyers, sellers, and investors. Machine learning has emerged as a potent tool in this domain, leveraging historical sales data, property features, and economic indicators to forecast future prices. However, the e...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2024 4th International Conference on Pervasive Computing and Social Networking (ICPCSN) s. 304 - 310
Hlavní autoři: Vaishnavi, A.V.S.S.P.L., Raghavendra, G. Gopi Krishna, Jilan, Mohammed, Chowdary, A. Pranya, Singh, Romen, C, Karthikeyan
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 03.05.2024
Témata:
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Predicting house prices accurately is crucial in real estate, influencing decisions for buyers, sellers, and investors. Machine learning has emerged as a potent tool in this domain, leveraging historical sales data, property features, and economic indicators to forecast future prices. However, the efficacy of machine learning models hinges on data quality, necessitating meticulous preprocessing steps such as cleansing, normalization, and feature engineering. Through techniques like data filtration and normalization, preprocessing refines data suitability for algorithms, enhancing predictive accuracy. In this study, we illustrate the transformative impact of preprocessing on predictive models' reliability. By contrasting accuracy tables for preprocessed and non-preprocessed datasets, we demonstrate the tangible benefits of preprocessing in refining predictive outcomes. The findings highlight the symbiotic relationship between machine learning algorithms and preprocessing techniques, emphasizing their crucial role in enhancing predictive capabilities in the dynamic real estate market landscape.
AbstractList Predicting house prices accurately is crucial in real estate, influencing decisions for buyers, sellers, and investors. Machine learning has emerged as a potent tool in this domain, leveraging historical sales data, property features, and economic indicators to forecast future prices. However, the efficacy of machine learning models hinges on data quality, necessitating meticulous preprocessing steps such as cleansing, normalization, and feature engineering. Through techniques like data filtration and normalization, preprocessing refines data suitability for algorithms, enhancing predictive accuracy. In this study, we illustrate the transformative impact of preprocessing on predictive models' reliability. By contrasting accuracy tables for preprocessed and non-preprocessed datasets, we demonstrate the tangible benefits of preprocessing in refining predictive outcomes. The findings highlight the symbiotic relationship between machine learning algorithms and preprocessing techniques, emphasizing their crucial role in enhancing predictive capabilities in the dynamic real estate market landscape.
Author Singh, Romen
C, Karthikeyan
Jilan, Mohammed
Vaishnavi, A.V.S.S.P.L.
Raghavendra, G. Gopi Krishna
Chowdary, A. Pranya
Author_xml – sequence: 1
  givenname: A.V.S.S.P.L.
  surname: Vaishnavi
  fullname: Vaishnavi, A.V.S.S.P.L.
  email: 2000030012cse@gmail.com
  organization: Koneru Lakshmaiah Education Foundation,Department of Computer Science and Engineering,Vaddeswaram,Andhra Pradesh
– sequence: 2
  givenname: G. Gopi Krishna
  surname: Raghavendra
  fullname: Raghavendra, G. Gopi Krishna
  email: 2000030327cse@gmail.com
  organization: Koneru Lakshmaiah Education Foundation,Department of Computer Science and Engineering,Vaddeswaram,Andhra Pradesh
– sequence: 3
  givenname: Mohammed
  surname: Jilan
  fullname: Jilan, Mohammed
  email: 2000030642cse@gmail.com
  organization: Koneru Lakshmaiah Education Foundation,Department of Computer Science and Engineering,Vaddeswaram,Andhra Pradesh
– sequence: 4
  givenname: A. Pranya
  surname: Chowdary
  fullname: Chowdary, A. Pranya
  email: 2000030047cse@gmail.com
  organization: Koneru Lakshmaiah Education Foundation,Department of Computer Science and Engineering,Vaddeswaram,Andhra Pradesh
– sequence: 5
  givenname: Romen
  surname: Singh
  fullname: Singh, Romen
  email: sukhamromen@yahoo.co.in
  organization: Koneru Lakshmaiah Education Foundation,Department of Computer Science and Engineering,Vaddeswaram,Andhra Pradesh
– sequence: 6
  givenname: Karthikeyan
  surname: C
  fullname: C, Karthikeyan
  email: ckarthik2k@gmail.com
  organization: Koneru Lakshmaiah Education Foundation,Department of Computer Science and Engineering,Vaddeswaram,Andhra Pradesh
BookMark eNotzN1KwzAcBfAIeqFzbyCSF-jMR5uPS6mbG1SdqNcjSf9ZAzMpaQf69uvQqwO_wzk36DKmCAjdU7KglOiHTb2tP14Fq4RaMMLKBSGkqi7QXEuteEW4ErzU1-h9-dMfUg5xj9fpOADe5uAAr1IGZ4bx7GOX03Hf4RfjuhABN2ByPBcmtvjJjGbaQJ-Tg2GY-BZdeXMYYP6fM_S1Wn7W66J5e97Uj00RqBRjIZkmnopWV1ZZACe4FxKsab00pLSMg_eKGQvaciHAcetbYRSfTHkuGJ-hu7_fAAC7Podvk393lAgiJeH8BJyZT3c
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICPCSN62568.2024.00055
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Xplore (IEEE/IET Electronic Library - IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore (IEEE/IET Electronic Library - IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798350386349
EndPage 310
ExternalDocumentID 10607703
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i176t-7290f16d95b8beec63f67ebadf7a04b23eff82abe9b366ec3bfd6a8382a8f3623
IEDL.DBID RIE
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001289477900048&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 07 05:31:02 EDT 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i176t-7290f16d95b8beec63f67ebadf7a04b23eff82abe9b366ec3bfd6a8382a8f3623
PageCount 7
ParticipantIDs ieee_primary_10607703
PublicationCentury 2000
PublicationDate 2024-May-3
PublicationDateYYYYMMDD 2024-05-03
PublicationDate_xml – month: 05
  year: 2024
  text: 2024-May-3
  day: 03
PublicationDecade 2020
PublicationTitle 2024 4th International Conference on Pervasive Computing and Social Networking (ICPCSN)
PublicationTitleAbbrev ICPCSN
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.884214
Snippet Predicting house prices accurately is crucial in real estate, influencing decisions for buyers, sellers, and investors. Machine learning has emerged as a...
SourceID ieee
SourceType Publisher
StartPage 304
SubjectTerms Accuracy
Biological system modeling
Data integrity
Data preprocessing
Deep learning
Feature extraction and feature engineering
House price prediction
Machine learning
Machine learning algorithms
Normalization
Symbiosis
Title Exploring House Price Forecasting through Machine Learning and Data Preprocessing
URI https://ieeexplore.ieee.org/document/10607703
WOSCitedRecordID wos001289477900048&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagYmACRBFveWANxHGwk7lQFQmqIB7qVvlxh7qkVZvy-_E5obAwsEWn2JbOss6P78HYlfApSIE-QXI1yUWOiRHWJT43piSJrDx6Hb4_6vG4mEzKqiOrRy4MAETwGVzTZ3zL93O3pquysMJVqjVpe25rrVuyVsf6FWl58zCoBi_jsKFXhNnKSBY7JQrfL9uUWDWGe_8cb5_1f_h3vNpUlgO2BfUhe97A5fgoHNfpj7DIOXlrOrMi9DLvTHf4U0RIAu_EUz-4qT2_M40JbWDRUgNCuM_ehvevg1HSGSIkM6FVQ7azKQrly1tbWACnJCoN1njUJs1tJgGxyIyF0kqlwEmLXplChliBoVLJI9ar5zUcM56FbYjyiOisyK31VkkNPpwWC-NCP-KE9Skf00WreTH9TsXpH_Eztkspj1BAec56zXINF2zHfTaz1fIyztQXKj6YYA
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZQQYIJEEW88cAaiGPXSeZA1Yo2KqKgbpUfZ9QlrdqU34_PDYWFgS06xbZ0lnV-fA9C7piNgTNnI4euJoIJFymmTWSFUjlKZIngdfg-SMsym0zyUUNWD1wYAAjgM7jHz_CWb-dmjVdlfoXLOE1R23O3I0TCNnSthvfL4vyhX4yK19Jv6SWithIUxo6RxPfLOCXUje7hP0c8Iu0fBh4dbWvLMdmB6oS8bAFztOcP7PiHX-YU3TWNWiF-mTa2O3QYMJJAG_nUD6oqSx9VrXwbWGzIAT7cJm_dp3HRixpLhGjGUlmj8WzsmLR5R2cawEjuZApaWZeqWOiEg3NZojTkmksJhmtnpcq4j2XO1yp-SlrVvIIzQhO_EZHWOWc0E1pbLXkK1p8XM2V8P-yctDEf08VG9WL6nYqLP-K3ZL83Hg6mg375fEkOMP0BGMivSKteruGa7JnPerZa3oRZ-wJENJun
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2024+4th+International+Conference+on+Pervasive+Computing+and+Social+Networking+%28ICPCSN%29&rft.atitle=Exploring+House+Price+Forecasting+through+Machine+Learning+and+Data+Preprocessing&rft.au=Vaishnavi%2C+A.V.S.S.P.L.&rft.au=Raghavendra%2C+G.+Gopi+Krishna&rft.au=Jilan%2C+Mohammed&rft.au=Chowdary%2C+A.+Pranya&rft.date=2024-05-03&rft.pub=IEEE&rft.spage=304&rft.epage=310&rft_id=info:doi/10.1109%2FICPCSN62568.2024.00055&rft.externalDocID=10607703