Identifying Individualized Functional Brain Networks: An Unsupervised Deep Temporal Attention Based Autoencoder Model

Identifying functional brain networks (FBNs) under naturalistic stimuli is crucial for understanding the brain function. While numerous studies have employed deep learning methods to model neural responses, most of them overlook self-attention mechanism of brain and the temporal dependencies in neur...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings (International Symposium on Biomedical Imaging) pp. 1 - 5
Main Authors: Wang, Kexin, Ren, Yudan, Liu, Zhengyang, Yin, Song, Ding, Zhenqing, Li, Xiao, He, Xiaowei
Format: Conference Proceeding
Language:English
Published: IEEE 27.05.2024
Subjects:
ISSN:1945-8452
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Identifying functional brain networks (FBNs) under naturalistic stimuli is crucial for understanding the brain function. While numerous studies have employed deep learning methods to model neural responses, most of them overlook self-attention mechanism of brain and the temporal dependencies in neural activity. In this study, we proposed an unsupervised deep temporal attention based autoencoder model (DTA-AE) that aimed to model brain function in a compact, standardized latent space, thus representing complex brain activities via dense embedding vectors. Our method employed self-attention mechanisms to establish inter-regional temporal dependencies and simulate brain's attention allocation mechanism. Experimental results demonstrated that reliable and distinctive FBNs can be extracted. Specifically, the fingerprint analysis revealed that the identified FBNs can capture the individualized characteristics, enabling accurate subject recognition. Furthermore, temporal features exhibited good temporal consistency across subjects demonstrated by the inter-subject correlation (ISC) analysis, further confirming the effectiveness of the proposed method.
AbstractList Identifying functional brain networks (FBNs) under naturalistic stimuli is crucial for understanding the brain function. While numerous studies have employed deep learning methods to model neural responses, most of them overlook self-attention mechanism of brain and the temporal dependencies in neural activity. In this study, we proposed an unsupervised deep temporal attention based autoencoder model (DTA-AE) that aimed to model brain function in a compact, standardized latent space, thus representing complex brain activities via dense embedding vectors. Our method employed self-attention mechanisms to establish inter-regional temporal dependencies and simulate brain's attention allocation mechanism. Experimental results demonstrated that reliable and distinctive FBNs can be extracted. Specifically, the fingerprint analysis revealed that the identified FBNs can capture the individualized characteristics, enabling accurate subject recognition. Furthermore, temporal features exhibited good temporal consistency across subjects demonstrated by the inter-subject correlation (ISC) analysis, further confirming the effectiveness of the proposed method.
Author Ding, Zhenqing
Yin, Song
Wang, Kexin
Ren, Yudan
Li, Xiao
He, Xiaowei
Liu, Zhengyang
Author_xml – sequence: 1
  givenname: Kexin
  surname: Wang
  fullname: Wang, Kexin
  organization: Northwest University,School of Information Science and Technology,Xi'an,China
– sequence: 2
  givenname: Yudan
  surname: Ren
  fullname: Ren, Yudan
  email: yudan.ren@nwu.edu.cn
  organization: Northwest University,School of Information Science and Technology,Xi'an,China
– sequence: 3
  givenname: Zhengyang
  surname: Liu
  fullname: Liu, Zhengyang
  organization: Northwest University,School of Information Science and Technology,Xi'an,China
– sequence: 4
  givenname: Song
  surname: Yin
  fullname: Yin, Song
  organization: Northwest University,School of Information Science and Technology,Xi'an,China
– sequence: 5
  givenname: Zhenqing
  surname: Ding
  fullname: Ding, Zhenqing
  organization: Northwest University,School of Information Science and Technology,Xi'an,China
– sequence: 6
  givenname: Xiao
  surname: Li
  fullname: Li, Xiao
  organization: Northwest University,School of Information Science and Technology,Xi'an,China
– sequence: 7
  givenname: Xiaowei
  surname: He
  fullname: He, Xiaowei
  organization: Northwest University,School of Information Science and Technology,Xi'an,China
BookMark eNo1kM1OwzAQhA0CiVL6Bkj4BVLW8V_MLS0UIhU40J4rN7aRIXWixCkqT08qYA-70szo02ou0Vmog0XohsCUEFC3xdus4IJLmKaQsikBQbkAOEETJVVGOVBCKc1O0YgoxpOM8fQCTbruA4aRjFFgI9QXxobo3cGHd1wE4_fe9Lry39bgRR_K6OugKzxrtQ_4xcavuv3s7nAe8Dp0fWPbve-G6L21DV7ZXVO3QzqP8QitA57po5v3sbahrI1t8fOwqyt07nTV2cnfHaP14mE1f0qWr4_FPF8mnkgRE-G2jHBSbt3wPB8kA65MSwFWOQWQcgKZZE6ZUjpipFCDLLdSM6GFpqmhY3T9y_XW2k3T-p1uD5v_pugPFCtg0A
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ISBI56570.2024.10635600
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9798350313338
EISSN 1945-8452
EndPage 5
ExternalDocumentID 10635600
Genre orig-research
GrantInformation_xml – fundername: Nature
  funderid: 10.13039/501100020487
GroupedDBID 23N
6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
M43
OCL
RIE
RIL
RNS
ID FETCH-LOGICAL-i176t-6fb4151cbf8455176d0fc2c60e9f9002510874f9dc7f1d7699f97b7a46a6a32d3
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001305705102112&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:32:08 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i176t-6fb4151cbf8455176d0fc2c60e9f9002510874f9dc7f1d7699f97b7a46a6a32d3
PageCount 5
ParticipantIDs ieee_primary_10635600
PublicationCentury 2000
PublicationDate 2024-May-27
PublicationDateYYYYMMDD 2024-05-27
PublicationDate_xml – month: 05
  year: 2024
  text: 2024-May-27
  day: 27
PublicationDecade 2020
PublicationTitle Proceedings (International Symposium on Biomedical Imaging)
PublicationTitleAbbrev ISBI
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000744304
Score 2.2570236
Snippet Identifying functional brain networks (FBNs) under naturalistic stimuli is crucial for understanding the brain function. While numerous studies have employed...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Brain modeling
Correlation
Deep learning
FBN identification
Feature extraction
Fingerprint recognition
Individualized FBNs
Naturalistic fMRI
Neural activity
Self-attention mechanisms
Vectors
Title Identifying Individualized Functional Brain Networks: An Unsupervised Deep Temporal Attention Based Autoencoder Model
URI https://ieeexplore.ieee.org/document/10635600
WOSCitedRecordID wos001305705102112&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LSgMxFA1aXOjGV8U3WbidOq_mJu5atViQUrCV7komuYFCmZbOjAu_3iTTVl24cBcyCQwJycl9nHMJueMm1qAAAy2Zc91AO5AqwQAh4zJRqYy9mM77KwwGfDIRwzVZ3XNhENEnn2HLNX0sXy9U5Vxl9oQ7NbXQWui7AKwma20dKhYLU2ubr3O4olDc99-6fRfVC60ZGKetzexfdVQ8jPQO__kDR6T5Tcijwy3UHJMdzE_IwQ8twVNS1ZRbT1ui_S3NavaJmvYseNU-P9p1JSHooE7-Lh5oJ6fjvKiW7soo7NAnxCUd1XpVc9opyzodknal-9qpyoVTvtS4oq6K2rxJxr3n0eNLsK6pEMwiYGXATGYhO1KZ4al9LAHToVGxYiEKI7zBEXJIjdAKTKSBCdsNGciUSSaTWCdnpJEvcjwn1CBHJ-AatrlOubZjjFDGJEzYBmvrC9J0Kzhd1rIZ083iXf7Rf0X23T650HwM16RRriq8IXvqo5wVq1u_2V_Ljax3
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LS8MwHA4yBfXia-LbHLx29rU8vG3qWHGWgZvsNtLkFxiMbqytB_96k7abevDgLaQplIT26-_xfR9Cd0z7ikoKjhLEpm5o2xEyAAdowkQgQ-GXYjrvAxrHbDLhw5qsXnJhAKBsPoOWHZa1fLWQhU2VmTfcqqm5JkLfttZZNV1rk1IxaBia6Lzu4vJcfh-9dSNb13NNIOiHrfX9v5xUSiDpHfzzEQ5R85uSh4cbsDlCW5Aeo_0faoInqKhItyVxCUcbotXsExTuGfiqsn64a00hcFy1f2cPuJPicZoVS_vRyMzSJ4AlHlWKVXPcyfOqIRJ3hb3aKfKF1b5UsMLWR23eROPe8-ix79SuCs7MoyR3iE4MaHsy0Sw0v0uUKFdLXxIXuOZlyOEyGmquJNWeooSbaZpQERJBROCr4BQ10kUKZwhrYGAlXN02UyFTZo3mUuuAcDMgbXWOmnYHp8tKOGO63ryLP-Zv0W5_9DqYDqL45RLt2TOzhXqfXqFGvirgGu3Ij3yWrW7Kg_8C87yvwA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+%28International+Symposium+on+Biomedical+Imaging%29&rft.atitle=Identifying+Individualized+Functional+Brain+Networks%3A+An+Unsupervised+Deep+Temporal+Attention+Based+Autoencoder+Model&rft.au=Wang%2C+Kexin&rft.au=Ren%2C+Yudan&rft.au=Liu%2C+Zhengyang&rft.au=Yin%2C+Song&rft.date=2024-05-27&rft.pub=IEEE&rft.eissn=1945-8452&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FISBI56570.2024.10635600&rft.externalDocID=10635600