Identifying Individualized Functional Brain Networks: An Unsupervised Deep Temporal Attention Based Autoencoder Model
Identifying functional brain networks (FBNs) under naturalistic stimuli is crucial for understanding the brain function. While numerous studies have employed deep learning methods to model neural responses, most of them overlook self-attention mechanism of brain and the temporal dependencies in neur...
Uloženo v:
| Vydáno v: | Proceedings (International Symposium on Biomedical Imaging) s. 1 - 5 |
|---|---|
| Hlavní autoři: | , , , , , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
27.05.2024
|
| Témata: | |
| ISSN: | 1945-8452 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Identifying functional brain networks (FBNs) under naturalistic stimuli is crucial for understanding the brain function. While numerous studies have employed deep learning methods to model neural responses, most of them overlook self-attention mechanism of brain and the temporal dependencies in neural activity. In this study, we proposed an unsupervised deep temporal attention based autoencoder model (DTA-AE) that aimed to model brain function in a compact, standardized latent space, thus representing complex brain activities via dense embedding vectors. Our method employed self-attention mechanisms to establish inter-regional temporal dependencies and simulate brain's attention allocation mechanism. Experimental results demonstrated that reliable and distinctive FBNs can be extracted. Specifically, the fingerprint analysis revealed that the identified FBNs can capture the individualized characteristics, enabling accurate subject recognition. Furthermore, temporal features exhibited good temporal consistency across subjects demonstrated by the inter-subject correlation (ISC) analysis, further confirming the effectiveness of the proposed method. |
|---|---|
| AbstractList | Identifying functional brain networks (FBNs) under naturalistic stimuli is crucial for understanding the brain function. While numerous studies have employed deep learning methods to model neural responses, most of them overlook self-attention mechanism of brain and the temporal dependencies in neural activity. In this study, we proposed an unsupervised deep temporal attention based autoencoder model (DTA-AE) that aimed to model brain function in a compact, standardized latent space, thus representing complex brain activities via dense embedding vectors. Our method employed self-attention mechanisms to establish inter-regional temporal dependencies and simulate brain's attention allocation mechanism. Experimental results demonstrated that reliable and distinctive FBNs can be extracted. Specifically, the fingerprint analysis revealed that the identified FBNs can capture the individualized characteristics, enabling accurate subject recognition. Furthermore, temporal features exhibited good temporal consistency across subjects demonstrated by the inter-subject correlation (ISC) analysis, further confirming the effectiveness of the proposed method. |
| Author | Ding, Zhenqing Yin, Song Wang, Kexin Ren, Yudan Li, Xiao He, Xiaowei Liu, Zhengyang |
| Author_xml | – sequence: 1 givenname: Kexin surname: Wang fullname: Wang, Kexin organization: Northwest University,School of Information Science and Technology,Xi'an,China – sequence: 2 givenname: Yudan surname: Ren fullname: Ren, Yudan email: yudan.ren@nwu.edu.cn organization: Northwest University,School of Information Science and Technology,Xi'an,China – sequence: 3 givenname: Zhengyang surname: Liu fullname: Liu, Zhengyang organization: Northwest University,School of Information Science and Technology,Xi'an,China – sequence: 4 givenname: Song surname: Yin fullname: Yin, Song organization: Northwest University,School of Information Science and Technology,Xi'an,China – sequence: 5 givenname: Zhenqing surname: Ding fullname: Ding, Zhenqing organization: Northwest University,School of Information Science and Technology,Xi'an,China – sequence: 6 givenname: Xiao surname: Li fullname: Li, Xiao organization: Northwest University,School of Information Science and Technology,Xi'an,China – sequence: 7 givenname: Xiaowei surname: He fullname: He, Xiaowei organization: Northwest University,School of Information Science and Technology,Xi'an,China |
| BookMark | eNo1kM1OwzAQhA0CiVL6Bkj4BVLW8V_MLS0UIhU40J4rN7aRIXWixCkqT08qYA-70szo02ou0Vmog0XohsCUEFC3xdus4IJLmKaQsikBQbkAOEETJVVGOVBCKc1O0YgoxpOM8fQCTbruA4aRjFFgI9QXxobo3cGHd1wE4_fe9Lry39bgRR_K6OugKzxrtQ_4xcavuv3s7nAe8Dp0fWPbve-G6L21DV7ZXVO3QzqP8QitA57po5v3sbahrI1t8fOwqyt07nTV2cnfHaP14mE1f0qWr4_FPF8mnkgRE-G2jHBSbt3wPB8kA65MSwFWOQWQcgKZZE6ZUjpipFCDLLdSM6GFpqmhY3T9y_XW2k3T-p1uD5v_pugPFCtg0A |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/ISBI56570.2024.10635600 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISBN | 9798350313338 |
| EISSN | 1945-8452 |
| EndPage | 5 |
| ExternalDocumentID | 10635600 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Nature funderid: 10.13039/501100020487 |
| GroupedDBID | 23N 6IE 6IF 6IK 6IL 6IN AAJGR AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IPLJI M43 OCL RIE RIL RNS |
| ID | FETCH-LOGICAL-i176t-6fb4151cbf8455176d0fc2c60e9f9002510874f9dc7f1d7699f97b7a46a6a32d3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001305705102112&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Aug 27 02:32:08 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i176t-6fb4151cbf8455176d0fc2c60e9f9002510874f9dc7f1d7699f97b7a46a6a32d3 |
| PageCount | 5 |
| ParticipantIDs | ieee_primary_10635600 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-May-27 |
| PublicationDateYYYYMMDD | 2024-05-27 |
| PublicationDate_xml | – month: 05 year: 2024 text: 2024-May-27 day: 27 |
| PublicationDecade | 2020 |
| PublicationTitle | Proceedings (International Symposium on Biomedical Imaging) |
| PublicationTitleAbbrev | ISBI |
| PublicationYear | 2024 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0000744304 |
| Score | 2.2569244 |
| Snippet | Identifying functional brain networks (FBNs) under naturalistic stimuli is crucial for understanding the brain function. While numerous studies have employed... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1 |
| SubjectTerms | Brain modeling Correlation Deep learning FBN identification Feature extraction Fingerprint recognition Individualized FBNs Naturalistic fMRI Neural activity Self-attention mechanisms Vectors |
| Title | Identifying Individualized Functional Brain Networks: An Unsupervised Deep Temporal Attention Based Autoencoder Model |
| URI | https://ieeexplore.ieee.org/document/10635600 |
| WOSCitedRecordID | wos001305705102112&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV05T8MwGLWgYoCFq4hbHlhT7NjYMVsLVHSpKtFK3SqfUiWUVk3CwK_HR1tgYGCLnFiKbMUv3_HeA-DOYzBSuTOZoppmNEcukw_MZcRZoQizgjkdzSb4cFhMp2K0JqtHLoy1Njaf2U64jLV8s9BNSJX5LzyoqSEfoe9yzhJZa5tQ8VhIfWy-7uHCSNwP3nqDUNVDPgzMaWcz-5ePSoSR_uE_X-AItL8JeXC0hZpjsGPLE3DwQ0vwFDSJchtpS3CwpVnNP62BfQ9eKecHe8ESAg5T83f1CLslnJRVswxHRuUffbZ2CcdJr-oddus6tUPCngx3u029CMqXxq5gcFF7b4NJ_2X89JqtPRWyOeaszphTHrKxVq6g_meJM4OczjVDVjgRAw5UcOqE0dxhw5nww1xxSZlkkuSGnIFWuSjtOYAaY-I0VcQWgmIppSaOEoO4UJgwhy5AO6zgbJlkM2abxbv8Y_wK7Id9CqX5nF-DVr1q7A3Y0x_1vFrdxs3-AqrnrHE |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LS8MwHA6ignrxNfFtDl47kyZLGm-bOlacZeAGu43mBYPRjbX14F9v0m5TDx68lTQtJaH9-nt83wfAvcNgJEOrA0kVDWiIbJC2mA2INUISZgSzqjKb4EkSjcdisCKrV1wYY0zVfGaa_rCq5eu5Kn2qzL3hXk0NuQh9p0XdfWu61ial4tCQuuh81cWFkXiI3zuxr-shFwiGtLm-_peTSgUk3cN_PsIRaHxT8uBgAzbHYMtkJ-Dgh5rgKShr0m1FXILxhmg1_TQadh181Vk_2PGmEDCp27_zR9jO4CjLy4X_aORu6rMxCzisFatmsF0UdUMk7KT-bLss5l77Upsl9D5qswYYdV-GT71g5aoQTDFnRcCsdKCNlbQRdb9LnGlkVagYMsKKKuRAEadWaMUt1pwJN8wlTylLWUpCTc7AdjbPzDmACmNiFZXERILiNE0VsZRoxIXEhFl0ARp-BSeLWjhjsl68yz_G78Beb_jWn_Tj5PUK7Ps984X6kF-D7WJZmhuwqz6Kab68rTb-C861r7g |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+%28International+Symposium+on+Biomedical+Imaging%29&rft.atitle=Identifying+Individualized+Functional+Brain+Networks%3A+An+Unsupervised+Deep+Temporal+Attention+Based+Autoencoder+Model&rft.au=Wang%2C+Kexin&rft.au=Ren%2C+Yudan&rft.au=Liu%2C+Zhengyang&rft.au=Yin%2C+Song&rft.date=2024-05-27&rft.pub=IEEE&rft.eissn=1945-8452&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FISBI56570.2024.10635600&rft.externalDocID=10635600 |