A Novel Weber Cross Information Sharing Deep Learning Encoder Decoder Model for Emotion Recognition Using Facial Expression

This study introduces an innovative deep learning framework, the Weber Cross Information Sharing Deep Learning Encoder-Decoder (WCISD-ED) model, designed for emotion recognition through facial expression analysis. Recognition of emotion is a pivotal aspect of man-machine interaction, offering profou...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:The ... CSI International Symposium on Artificial Intelligence & Signal Processing (Online) s. 1 - 5
Hlavní autoři: Kumar R, Jeen Retna, Stanley, Berakhah.F., V, Gnanaprakash, P, Bini Palas, E, Purusothaman K, D J, Joel Devadass Daniel
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 26.10.2024
Témata:
ISSN:2640-5768
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract This study introduces an innovative deep learning framework, the Weber Cross Information Sharing Deep Learning Encoder-Decoder (WCISD-ED) model, designed for emotion recognition through facial expression analysis. Recognition of emotion is a pivotal aspect of man-machine interaction, offering profound implications in areas ranging from mental health assessment to customer service and entertainment. However, because human expressions are so subtle and varied, accurately deducing emotions from facial expressions is a sophisticated task. The WCISD-ED model is crafted to address these complexities by incorporating principles derived from Weber's Law, which relates to the perception of changes in visual stimuli. This integration enhances the model's sensitivity to the minute yet critical variations in facial expressions associated with different emotions. The model features a novel cross information sharing structure within an encoder-decoder architecture, enabling the effective processing of facial features at multiple scales and depths. The encoder segment of the model focuses on the detailed extraction of facial features, while the decoder reconstructs these features into recognizable emotion categories. The cross information sharing mechanism allows for the interaction between different layers of the network, facilitating a more comprehensive and nuanced understanding of facial expressions. Extensive testing on diverse datasets demonstrates that the WCISD-ED model significantly outperforms existing emotion recognition models in terms of accuracy and reliability.
AbstractList This study introduces an innovative deep learning framework, the Weber Cross Information Sharing Deep Learning Encoder-Decoder (WCISD-ED) model, designed for emotion recognition through facial expression analysis. Recognition of emotion is a pivotal aspect of man-machine interaction, offering profound implications in areas ranging from mental health assessment to customer service and entertainment. However, because human expressions are so subtle and varied, accurately deducing emotions from facial expressions is a sophisticated task. The WCISD-ED model is crafted to address these complexities by incorporating principles derived from Weber's Law, which relates to the perception of changes in visual stimuli. This integration enhances the model's sensitivity to the minute yet critical variations in facial expressions associated with different emotions. The model features a novel cross information sharing structure within an encoder-decoder architecture, enabling the effective processing of facial features at multiple scales and depths. The encoder segment of the model focuses on the detailed extraction of facial features, while the decoder reconstructs these features into recognizable emotion categories. The cross information sharing mechanism allows for the interaction between different layers of the network, facilitating a more comprehensive and nuanced understanding of facial expressions. Extensive testing on diverse datasets demonstrates that the WCISD-ED model significantly outperforms existing emotion recognition models in terms of accuracy and reliability.
Author V, Gnanaprakash
P, Bini Palas
Kumar R, Jeen Retna
Stanley, Berakhah.F.
E, Purusothaman K
D J, Joel Devadass Daniel
Author_xml – sequence: 1
  givenname: Jeen Retna
  surname: Kumar R
  fullname: Kumar R, Jeen Retna
  email: jejinrsrch@gmail.com
  organization: Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology,Electronics and Communication Engineering,Chennai,India
– sequence: 2
  givenname: Berakhah.F.
  surname: Stanley
  fullname: Stanley, Berakhah.F.
  email: berakhahs@gmail.com
  organization: Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology,Electronics and Communication Engineering,Chennai,India
– sequence: 3
  givenname: Gnanaprakash
  surname: V
  fullname: V, Gnanaprakash
  email: gnanaprakashvpsg@gmail.com
  organization: Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology,Electronics and Communication Engineering,Chennai,India
– sequence: 4
  givenname: Bini Palas
  surname: P
  fullname: P, Bini Palas
  email: binipalas16@gmail.com
  organization: Electronics and Communication Engineering, SRM Easwari Engineering College,Chennai,India
– sequence: 5
  givenname: Purusothaman K
  surname: E
  fullname: E, Purusothaman K
  email: drpurushothamanke@veltech.edu.in
  organization: Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology,Electronics and Communication Engineering,Chennai,India
– sequence: 6
  givenname: Joel Devadass Daniel
  surname: D J
  fullname: D J, Joel Devadass Daniel
  email: drjoelmephd@gmail.com
  organization: Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology,Electronics and Communication Engineering,Chennai,India
BookMark eNo1UNtKA0EMHUXBWvsHgvMDWyc798fSixbqBWvxscxus3VlO1tmiij-vNNWIeQkOecEkkty5luPhNwA6wMwezuYzp8VaIB-znLRB2Y0M1yfkJ7V1nDJUigpTkknV4JlUitzQXoxfjDGeJ5YLjrkZ0Af209s6BsWGOgwtDHSqa_asHG7uvV0_u5C7dd0hLilM3TB77uxL9tV0o_wiA8pNzS56HjTHnwviVn7-lAv4t4zcWXtGjr-2gaMMc2vyHnlmoi9P-ySxWT8OrzPZk930-FgltWg1S5TDK1AdMDLArStRGElmFI6WZQanbFVJYzQWqWbeK5kBbIECXalHZhcV7xLro97a0RcbkO9ceF7-f8v_gudFmHA
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/AISP61711.2024.10870837
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library (IEL) (UW System Shared)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9798350350654
EISSN 2640-5768
EndPage 5
ExternalDocumentID 10870837
Genre orig-research
GroupedDBID 6IE
6IF
6IL
6IN
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
OCL
RIE
RIL
ID FETCH-LOGICAL-i176t-60e94eea13cb179f4b9518c5a5bc7ea89ff4847762033265f15c1519d7a1827f3
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001446270200104&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Feb 26 09:43:36 EST 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i176t-60e94eea13cb179f4b9518c5a5bc7ea89ff4847762033265f15c1519d7a1827f3
PageCount 5
ParticipantIDs ieee_primary_10870837
PublicationCentury 2000
PublicationDate 2024-Oct.-26
PublicationDateYYYYMMDD 2024-10-26
PublicationDate_xml – month: 10
  year: 2024
  text: 2024-Oct.-26
  day: 26
PublicationDecade 2020
PublicationTitle The ... CSI International Symposium on Artificial Intelligence & Signal Processing (Online)
PublicationTitleAbbrev AISP
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0003203534
Score 1.8870125
Snippet This study introduces an innovative deep learning framework, the Weber Cross Information Sharing Deep Learning Encoder-Decoder (WCISD-ED) model, designed for...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Accuracy
Decoding
Deep learning
Emotion recognition
encoder decoder
face expression
Face recognition
Facial emotion
Facial features
Feature extraction
Information sharing
Testing
Visualization
weber cross information sharing
Title A Novel Weber Cross Information Sharing Deep Learning Encoder Decoder Model for Emotion Recognition Using Facial Expression
URI https://ieeexplore.ieee.org/document/10870837
WOSCitedRecordID wos001446270200104&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La8MwDDZr2WGn7tGxNzrsmi6OnTg5li5lu5SyB-utOIk8CiUtWVoG-_OT8-jYYYedYgwOwYr8SbI-ibFbNK7xuOaOMhg50lPcCVFKBwUXaRpGmeJJ1WxCTSbhbBZNG7J6xYVBxCr5DAd2WN3lZ6t0Y0NlpOH0d5FH1WEdpYKarLULqAjPFb6QTQ4Xd6O74ePzlACaWzfQk4N29a8-KhWMjHv__IBD1v8h5MF0BzVHbA_zY9ZrOzJAo6An7GsIk9UWl_BGu1bAyEIgNIwjKwGw9ZnpDXCPuIamtuo7xLllthc0Wz9tg7Ql0CqI6y4_8NTmGdG4yjKAsbbBdog_m0zavM9ex_HL6MFp2is4C66C0glcjCSiJqEkpJZGJmRthamv_SRVqMPIGEnYRaelK8jI8w33U7IPSHyanBJlxCnr5qsczxgYOijI8ouMm3GJwk0SW_lLcz80KiMdP2d9u5nzdV1BY97u48Uf85fswIrMYoQXXLFuWWzwmu2n23LxUdxUcv8GoqGuOQ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF60Cnqqj4pv5-A1NZvddJNjqSkWayhasbeSx6wUSlpiWwT_vLNpUvHgwVOWhQ1hZ2e_mcnMfIzdora1wyNuKY2-JR3FLQ-ltFBwkSSenyoeF2QTKgy90cgflMXqRS0MIhbJZ9g0w-JffjpLliZURhpOp4s8qm22Y6izynKtTUhFOLZwhSyzuLjt37V7LwOCaG4cQUc2q_W_mFQKIOnW__kJB6zxU5IHgw3YHLItzI5YveJkgFJFj9lXG8LZCqfwRvuWQ8eAIJQ1R0YGYDo00xvgHnEOZXfVdwgyU9ue0-z6aSjSpkCrIFjz_MBzlWlE4yLPALqRCbdD8Fnm0mYN9toNhp0HqyRYsCZctRZWy0ZfIkYklpgUU8uY7C0vcSM3ThRGnq-1JPSi-9IWZOa5mrsJWQgkwIjcEqXFCatlswxPGWi6Ksj287WdconCjmPT-yvirqdVSlp-xhpmM8fzdQ-NcbWP53_M37C9h-FTf9zvhY8XbN-IzyCG07pktUW-xCu2m6wWk4_8ujgD3-N_sYI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=The+...+CSI+International+Symposium+on+Artificial+Intelligence+%26+Signal+Processing+%28Online%29&rft.atitle=A+Novel+Weber+Cross+Information+Sharing+Deep+Learning+Encoder+Decoder+Model+for+Emotion+Recognition+Using+Facial+Expression&rft.au=Kumar+R%2C+Jeen+Retna&rft.au=Stanley%2C+Berakhah.F.&rft.au=V%2C+Gnanaprakash&rft.au=P%2C+Bini+Palas&rft.date=2024-10-26&rft.pub=IEEE&rft.eissn=2640-5768&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FAISP61711.2024.10870837&rft.externalDocID=10870837