Dynamic Graph Representation with Knowledge-Aware Attention for Histopathology Whole Slide Image Analysis

Histopathological whole slide images (WSIs) classification has become a foundation task in medical microscopic imaging processing. Prevailing approaches involve learning WSIs as instance-bag representations, emphasizing significant instances but struggling to capture the interactions between instanc...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) s. 11323 - 11332
Hlavní autoři: Li, Jiawen, Chen, Yuxuan, Chu, Hongbo, Sun, Qiehe, Guan, Tian, Han, Anjia, He, Yonghong
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 16.06.2024
Témata:
ISSN:1063-6919
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Histopathological whole slide images (WSIs) classification has become a foundation task in medical microscopic imaging processing. Prevailing approaches involve learning WSIs as instance-bag representations, emphasizing significant instances but struggling to capture the interactions between instances. Additionally, conventional graph representation methods utilize explicit spatial positions to construct topological structures but restrict the flexible interaction capabilities between instances at arbitrary locations, particularly when spatially distant. In response, we propose a novel dynamic graph representation algorithm that conceptualizes WSIs as a form of the knowledge graph structure. Specifically, we dynamically construct neighbors and directed edge embeddings based on the head and tail relationships between instances. Then, we devise a knowledge-aware attention mechanism that can update the head node features by learning the joint attention score of each neighbor and edge. Finally, we obtain a graph-level embedding through the global pooling process of the updated head, serving as an implicit representation for the WSI classification. Our end-to-end graph representation learning approach has outperformed the state-of-the-art WSI analysis methods on three TCGA benchmark datasets and in-house test sets. Our code is available at https://github.com/WonderLandxD/WiKG.
AbstractList Histopathological whole slide images (WSIs) classification has become a foundation task in medical microscopic imaging processing. Prevailing approaches involve learning WSIs as instance-bag representations, emphasizing significant instances but struggling to capture the interactions between instances. Additionally, conventional graph representation methods utilize explicit spatial positions to construct topological structures but restrict the flexible interaction capabilities between instances at arbitrary locations, particularly when spatially distant. In response, we propose a novel dynamic graph representation algorithm that conceptualizes WSIs as a form of the knowledge graph structure. Specifically, we dynamically construct neighbors and directed edge embeddings based on the head and tail relationships between instances. Then, we devise a knowledge-aware attention mechanism that can update the head node features by learning the joint attention score of each neighbor and edge. Finally, we obtain a graph-level embedding through the global pooling process of the updated head, serving as an implicit representation for the WSI classification. Our end-to-end graph representation learning approach has outperformed the state-of-the-art WSI analysis methods on three TCGA benchmark datasets and in-house test sets. Our code is available at https://github.com/WonderLandxD/WiKG.
Author Sun, Qiehe
Chen, Yuxuan
Guan, Tian
Han, Anjia
Li, Jiawen
He, Yonghong
Chu, Hongbo
Author_xml – sequence: 1
  givenname: Jiawen
  surname: Li
  fullname: Li, Jiawen
  email: lijiawen21@mails.tsinghua.edu.cn
  organization: Shenzhen International Graduate School, Tsinghua University
– sequence: 2
  givenname: Yuxuan
  surname: Chen
  fullname: Chen, Yuxuan
  email: chenyx23@mails.tsinghua.edu.cn
  organization: Shenzhen International Graduate School, Tsinghua University
– sequence: 3
  givenname: Hongbo
  surname: Chu
  fullname: Chu, Hongbo
  email: zhu-hb23@mails.tsinghua.edu.cn
  organization: Shenzhen International Graduate School, Tsinghua University
– sequence: 4
  givenname: Qiehe
  surname: Sun
  fullname: Sun, Qiehe
  organization: Shenzhen International Graduate School, Tsinghua University
– sequence: 5
  givenname: Tian
  surname: Guan
  fullname: Guan, Tian
  organization: Shenzhen International Graduate School, Tsinghua University
– sequence: 6
  givenname: Anjia
  surname: Han
  fullname: Han, Anjia
  email: hananjia@mail.sysu.edu.cn
  organization: The First Affiliated Hospital of Sun Yat-sen University,Department of Pathology
– sequence: 7
  givenname: Yonghong
  surname: He
  fullname: He, Yonghong
  email: heyh@sz.tsinghua.edu.cn
  organization: Shenzhen International Graduate School, Tsinghua University
BookMark eNotkMtOwzAUBQ0CiVL6B134B1Ku7fi1rAq0FZVA5bWsTHLdGqVJFFuq8vcNgtUszmgW55Zc1U2NhEwZzBgDe7_4fN1KroWYceD5DBhodUEmVlsjJAgpANQlGTFQIlOW2RsyifEHAARnTFkzIuGhr90xFHTZufZAt9h2GLFOLoWmpqeQDvS5bk4VlnvM5ifXIZ2nNAi_s286ugoxNa1Lh6Zq9j39Goj0rQol0vXR7Qe9dlUfQ7wj195VESf_HJOPp8f3xSrbvCzXi_kmC0yrlEn0KmfesMI4xLz81oXC3GsjlM4Lb2RpCp5bpTzIXErgyIUywnpbiBJKJsZk-tcNiLhru3B0Xb8bLpAGlBZnUihb6g
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/CVPR52733.2024.01076
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISBN 9798350353006
EISSN 1063-6919
EndPage 11332
ExternalDocumentID 10658067
Genre orig-research
GroupedDBID 6IE
6IH
6IL
6IN
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
OCL
RIE
RIL
RIO
ID FETCH-LOGICAL-i176t-5ef641f81c8aee4db7c6e4f783674cf85d8c24966f0545502e236839f9c3d0d13
IEDL.DBID RIE
ISICitedReferencesCount 30
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001342442402064&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:00:57 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i176t-5ef641f81c8aee4db7c6e4f783674cf85d8c24966f0545502e236839f9c3d0d13
PageCount 10
ParticipantIDs ieee_primary_10658067
PublicationCentury 2000
PublicationDate 2024-June-16
PublicationDateYYYYMMDD 2024-06-16
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-June-16
  day: 16
PublicationDecade 2020
PublicationTitle Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online)
PublicationTitleAbbrev CVPR
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0003211698
Score 2.5329242
Snippet Histopathological whole slide images (WSIs) classification has become a foundation task in medical microscopic imaging processing. Prevailing approaches...
SourceID ieee
SourceType Publisher
StartPage 11323
SubjectTerms Computer vision
Head
Heuristic algorithms
Histopathology
Image analysis
Microscopy
Representation learning
Title Dynamic Graph Representation with Knowledge-Aware Attention for Histopathology Whole Slide Image Analysis
URI https://ieeexplore.ieee.org/document/10658067
WOSCitedRecordID wos001342442402064&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV27TsMwFLVoxcBUHkW85YHVJU4c2xmrQgEhVVV5dati-1qKBClqU_h9bCctLAxsVgZH8pV9n-cchC4ZZyCi3BKeqJT4_i3J88QSCHRhCbU8VkFsQoxGcjrNxg1YPWBhACAMn0HPL0Mv38z1ypfK3A13_tI9ry3UEoLXYK1NQSVxqQzPZAOPo1F2NXgZTzy_WOLSwJj1XObhmUV-iagEHzLs_PPvu6j7g8bD442f2UNbUO6jThM-4uZyLg9QcV2ry-NbT0KNJ2HGtYEWldgXXPHDuoJG-l_5AnC_qupxR-xiVxwoQ7xEcSi141cvnYsf3woD-P7dvTt4zWDSRc_Dm6fBHWmUFEhBBa9ICpYzaiXVMgdgRgnNgVmP4BBMW5kaqV0exrl1EZzLWWJwlnKhk810YiJDk0PULuclHCFsfSdQQZrmirHYbSjiWBklY200pFF-jLr-6GYfNVnGbH1qJ398P0U73jp--oryM9SuFis4R9v6syqWi4tg4m9HV6jJ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT8IwGH6jaKIn_MD4bQ9ei_vouu1IUISAhCAqN7K1b5MlOAwM_fu2ZaAXD96aHbqkb9r383kegFvGGYZOoij304Ca_i1NEl9RtHRhvqu4l1qxibDfj8bjeFCC1S0WBhHt8BnWzdL28uVMLE2pTN9w7S_187oNO0Y6q4RrbUoqvk5meByVADnXie-ar4OhYRjzdSLosbrOPQy3yC8ZFetFWtV__v8Aaj94PDLYeJpD2ML8CKplAEnK67k4hux-pS9PHg0NNRnaKdcSXJQTU3Il3XUNjTa-kjmSRlGsBh6Jjl6JJQ0xIsW22E7ejHgueZ5mEknnXb88ZM1hUoOX1sOo2aallgLN3JAXNEDFmasiV0QJIpNpKDgyZTAcIRMqCmQkdCbGudIxnM5aPNS20sGTioUvHen6J1DJZzmeAlGmF5hiECQpY57eMPS8VKaRJ6TAwEnOoGaObvKxosuYrE_t_I_vN7DXHj31Jr1Ov3sB-8ZSZhbL5ZdQKeZLvIJd8Vlki_m1Nfc3PhqsEg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+%28IEEE+Computer+Society+Conference+on+Computer+Vision+and+Pattern+Recognition.+Online%29&rft.atitle=Dynamic+Graph+Representation+with+Knowledge-Aware+Attention+for+Histopathology+Whole+Slide+Image+Analysis&rft.au=Li%2C+Jiawen&rft.au=Chen%2C+Yuxuan&rft.au=Chu%2C+Hongbo&rft.au=Sun%2C+Qiehe&rft.date=2024-06-16&rft.pub=IEEE&rft.eissn=1063-6919&rft.spage=11323&rft.epage=11332&rft_id=info:doi/10.1109%2FCVPR52733.2024.01076&rft.externalDocID=10658067