An FPGA-Based Accelerator for Graph Embedding using Sequential Training Algorithm
A graph embedding is an emerging approach that can represent a graph structure with a fixed-length low-dimensional vector. node2vec is a well-known algorithm to obtain such a graph embedding by sampling neighboring nodes on a given graph with a random walk technique. However, the original node2vec a...
Uložené v:
| Vydané v: | 2024 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW) s. 148 - 154 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Konferenčný príspevok.. |
| Jazyk: | English |
| Vydavateľské údaje: |
IEEE
27.05.2024
|
| Predmet: | |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | A graph embedding is an emerging approach that can represent a graph structure with a fixed-length low-dimensional vector. node2vec is a well-known algorithm to obtain such a graph embedding by sampling neighboring nodes on a given graph with a random walk technique. However, the original node2vec algorithm typically relies on a batch training of graph structures; thus, it is not suited for applications in which the graph structure changes after the deployment. In this paper, we focus on node2vec applications for IoT (Internet of Things) environments. To handle the changes of graph structures after the IoT devices have been deployed in edge environments, in this paper we propose to combine an online sequential training algorithm with node2vec. The proposed sequentially-trainable model is implemented on an FPGA (Field-Programmable Gate Array) device to demonstrate the benefits of our approach. The proposed FPGA implementation achieves up to 205.25 times speedup compared to the original model on ARM Cortex-A53 CPU. Evaluation results using dynamic graphs show that although the accuracy is decreased in the original model, the proposed sequential model can obtain better graph embedding that achieves a higher accuracy even when the graph structure is changed. |
|---|---|
| AbstractList | A graph embedding is an emerging approach that can represent a graph structure with a fixed-length low-dimensional vector. node2vec is a well-known algorithm to obtain such a graph embedding by sampling neighboring nodes on a given graph with a random walk technique. However, the original node2vec algorithm typically relies on a batch training of graph structures; thus, it is not suited for applications in which the graph structure changes after the deployment. In this paper, we focus on node2vec applications for IoT (Internet of Things) environments. To handle the changes of graph structures after the IoT devices have been deployed in edge environments, in this paper we propose to combine an online sequential training algorithm with node2vec. The proposed sequentially-trainable model is implemented on an FPGA (Field-Programmable Gate Array) device to demonstrate the benefits of our approach. The proposed FPGA implementation achieves up to 205.25 times speedup compared to the original model on ARM Cortex-A53 CPU. Evaluation results using dynamic graphs show that although the accuracy is decreased in the original model, the proposed sequential model can obtain better graph embedding that achieves a higher accuracy even when the graph structure is changed. |
| Author | Sugiura, Keisuke Matsutani, Hiroki Sunaga, Kazuki |
| Author_xml | – sequence: 1 givenname: Kazuki surname: Sunaga fullname: Sunaga, Kazuki email: sunaga@arc.ics.keio.ac.jp organization: Keio University,Yokohama,Japan,223-8522 – sequence: 2 givenname: Keisuke surname: Sugiura fullname: Sugiura, Keisuke email: sugiura@arc.ics.keio.ac.jp organization: Keio University,Yokohama,Japan,223-8522 – sequence: 3 givenname: Hiroki surname: Matsutani fullname: Matsutani, Hiroki email: matutani@arc.ics.keio.ac.jp organization: Keio University,Yokohama,Japan,223-8522 |
| BookMark | eNotjs9Kw0AYxFfQg9a-gUheIPHbv8keY21joWCkFY9l3f3SLiSbukkPvr0pepgZ-MEMc0euQx-QkEcKGaWgn9b1S739VJxSnTFgIgMAAVdkrnNdcAlcCQXqlryXIVnVVZk-mwFdUlqLLUYz9jFpJlXRnI7JsvtC53w4JOfh4lv8PmMYvWmTXTQ-XFjZHvrox2N3T24a0w44_88Z-Vgtd4vXdPNWrRflJvU0V2MqLQPtHC-YZVJoaxxgQY3SFnPXMMGFsFRy5rRVtjBUNMBlXjCkUunpDZ-Rh79dj4j7U_SdiT97ClIrMdV_AWfPTSQ |
| CODEN | IEEPAD |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/IPDPSW63119.2024.00040 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Xplore IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 9798350364606 |
| EndPage | 154 |
| ExternalDocumentID | 10596424 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IL CBEJK RIE RIL |
| ID | FETCH-LOGICAL-i176t-5c209dd382c2549cad0e81a69ce7df24344c1532d9c6c8a14f035782e1569edd3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001284697300078&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Jul 31 06:01:59 EDT 2024 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i176t-5c209dd382c2549cad0e81a69ce7df24344c1532d9c6c8a14f035782e1569edd3 |
| PageCount | 7 |
| ParticipantIDs | ieee_primary_10596424 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-May-27 |
| PublicationDateYYYYMMDD | 2024-05-27 |
| PublicationDate_xml | – month: 05 year: 2024 text: 2024-May-27 day: 27 |
| PublicationDecade | 2020 |
| PublicationTitle | 2024 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW) |
| PublicationTitleAbbrev | IPDPSW |
| PublicationYear | 2024 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| Score | 1.8788693 |
| Snippet | A graph embedding is an emerging approach that can represent a graph structure with a fixed-length low-dimensional vector. node2vec is a well-known algorithm... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 148 |
| SubjectTerms | Accuracy Conferences Distributed processing FPGA Graph embedding Heuristic algorithms Internet of Things node2vec OS-ELM Sequential training Training Vectors |
| Title | An FPGA-Based Accelerator for Graph Embedding using Sequential Training Algorithm |
| URI | https://ieeexplore.ieee.org/document/10596424 |
| WOSCitedRecordID | wos001284697300078&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZoxcAEiCLe8sAamjhO4owB2sJSBbWIbpV755RKbYJKyu_n7AYQAwObZfkhnWXfne--7xi7Fgp0IYqZVwCSg4IpeLMoRLru5LJE4CMW2hWbSIZDNZmkeQNWd1gYY4xLPjM3tuli-VjBxn6Vda0tQPaybLFWksRbsFaD-g38tPuY3-ejlzgMAotAEdIxcfq_yqY4rdHf_-d-B6zzg7_j-bdmOWQ7pjxiT1nJ-_kg825J8SDPAEhjuCA5J8OTDyzzNO-tZgbtJG4T2ud85DKl6RYv-bgpBsGz5bxaL-rXVYc993vjuwevKYjgLYIkrr0IhJ8ihkqA9etAo29UoOMUTIKFkKGUQC-YIInHoHQgC9-S2QhDTlpKu4fHrF1WpTlhPAQaItAATZdaK0WPHgpaxfKNgYpOWcfKY_q25byYfoni7I_-c7ZnRW7j6iK5YO16vTGXbBc-6sX7-sqd1Cc-tpbW |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT8MwDLVgIMEJEEN8kwPXsjZN2_RYYGMTYyraELtNnZOOSVuHRsfvxwkFxIEDtypqGslVYjv2ew_gkkvMcp6PnRwVJSgqRmcc-Iq2O6UsAbpK5ZkVm4h6PTkcxmkFVrdYGK21bT7TV-bR1vLVAlfmqqxhYgGKl8U6bBjprAquVeF-PTdudNLbtP8c-p5nMChcWC5O95dwivUbrZ1_rrgL9R8EHku_fcserOliHx6TgrXSu8S5JtejWIJIPsOWyRmFnuzOcE-z5nyslZnETEv7hPVtrzTt4xkbVHIQLJlNFstp-TKvw1OrObhpO5UkgjP1orB0AuRurJQvOZrMDjPlaullYYw6UjkXvhBIZxgnm4coM0_krqGz4ZrStJhW9w-gViwKfQjMR3qFK400XWSZlHTsKU5fMYxjKIMjqBt7jF4_WS9GX6Y4_mP8Arbag4fuqNvp3Z_AtjG_qbLz6BRq5XKlz2AT38vp2_Lc_rUPS4WaHw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2024+IEEE+International+Parallel+and+Distributed+Processing+Symposium+Workshops+%28IPDPSW%29&rft.atitle=An+FPGA-Based+Accelerator+for+Graph+Embedding+using+Sequential+Training+Algorithm&rft.au=Sunaga%2C+Kazuki&rft.au=Sugiura%2C+Keisuke&rft.au=Matsutani%2C+Hiroki&rft.date=2024-05-27&rft.pub=IEEE&rft.spage=148&rft.epage=154&rft_id=info:doi/10.1109%2FIPDPSW63119.2024.00040&rft.externalDocID=10596424 |