Stochastic Integration Based Estimator: Robust Design and Stone Soup Implementation
This paper deals with state estimation of nonlinear stochastic dynamic models. In particular, the stochastic integration rule, which provides asymptotically unbiased estimates of the moments of nonlinearly transformed Gaussian random variables, is reviewed together with the recently introduced stoch...
Uložené v:
| Vydané v: | 2024 27th International Conference on Information Fusion (FUSION) s. 1 - 8 |
|---|---|
| Hlavní autori: | , , , , , |
| Médium: | Konferenčný príspevok.. |
| Jazyk: | English |
| Vydavateľské údaje: |
ISIF
08.07.2024
|
| Predmet: | |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | This paper deals with state estimation of nonlinear stochastic dynamic models. In particular, the stochastic integration rule, which provides asymptotically unbiased estimates of the moments of nonlinearly transformed Gaussian random variables, is reviewed together with the recently introduced stochastic integration filter (SIF). Using SIF, the respective multi-step prediction and smoothing algorithms are developed in full and efficient square-root form. The stochastic-integration-rule-based algorithms are implemented in Python (within the Stone Soup framework) and in MATLAB® and are numerically evaluated and compared with the well-known unscented and extended Kalman filters using the Stone Soup defined tracking scenario. |
|---|---|
| AbstractList | This paper deals with state estimation of nonlinear stochastic dynamic models. In particular, the stochastic integration rule, which provides asymptotically unbiased estimates of the moments of nonlinearly transformed Gaussian random variables, is reviewed together with the recently introduced stochastic integration filter (SIF). Using SIF, the respective multi-step prediction and smoothing algorithms are developed in full and efficient square-root form. The stochastic-integration-rule-based algorithms are implemented in Python (within the Stone Soup framework) and in MATLAB® and are numerically evaluated and compared with the well-known unscented and extended Kalman filters using the Stone Soup defined tracking scenario. |
| Author | Niu, Ruixin Blasch, Erik Matousek, Jakub Straka, Ondrej Dunik, Jindrich Hiles, John |
| Author_xml | – sequence: 1 givenname: Jindrich surname: Dunik fullname: Dunik, Jindrich email: dunikj@kky.zcu.cz organization: Univ. of West Bohemia Univerzitní 8,Dept. of Cyber.,Pilsen,Czech Rep.,306 14 – sequence: 2 givenname: Jakub surname: Matousek fullname: Matousek, Jakub email: matoujak@kky.zcu.cz organization: Univ. of West Bohemia Univerzitní 8,Dept. of Cyber.,Pilsen,Czech Rep.,306 14 – sequence: 3 givenname: Ondrej surname: Straka fullname: Straka, Ondrej email: straka30@kky.zcu.cz organization: Univ. of West Bohemia Univerzitní 8,Dept. of Cyber.,Pilsen,Czech Rep.,306 14 – sequence: 4 givenname: Erik surname: Blasch fullname: Blasch, Erik email: erik.blasch@gmail.com organization: MOVEJ Analytics,Fairborn,OH,USA – sequence: 5 givenname: John surname: Hiles fullname: Hiles, John email: hilesj@vcu.edu organization: Virginia Commonwealth University,Dept. of ECE – sequence: 6 givenname: Ruixin surname: Niu fullname: Niu, Ruixin email: rniu@vcu.edu organization: Virginia Commonwealth University,Dept. of ECE |
| BookMark | eNo1j01Lw0AURUfQhdb-AxeD-9SZzOdzp7XVQLFg7LpMkjc10MyEZLrw3xuqri5cOJdzb8hliAEJuedskQvg8LDelcX2XQFYu8hZLhecGaal0RdkDsZyI4yRYDRck7JMsf5yY2prWoSEh8GlNgb67EZs6GrqO5fi8Eg_YnUaE33BsT0E6kJDJzIgLeOpp0XXH7HDkM7wLbny7jji_C9nZLdefS7fss32tVg-bbKWG50yBc5bBzxvKuUYag71pCaZrpjwEhqra-crxXNhkVtZq8ZILb1UXjDvBYoZufvdbRFx3w-T6vC9__8qfgAssFAM |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.23919/FUSION59988.2024.10706476 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE/IET Electronic Library IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 9781737749769 1737749769 |
| EndPage | 8 |
| ExternalDocumentID | 10706476 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IL CBEJK RIE RIL |
| ID | FETCH-LOGICAL-i176t-59af8a912db5a0e619c817406b03f49d86cafb51238e184c5d7464f45f30ff3e3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001334560000204&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Oct 16 05:58:50 EDT 2024 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i176t-59af8a912db5a0e619c817406b03f49d86cafb51238e184c5d7464f45f30ff3e3 |
| PageCount | 8 |
| ParticipantIDs | ieee_primary_10706476 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-July-8 |
| PublicationDateYYYYMMDD | 2024-07-08 |
| PublicationDate_xml | – month: 07 year: 2024 text: 2024-July-8 day: 08 |
| PublicationDecade | 2020 |
| PublicationTitle | 2024 27th International Conference on Information Fusion (FUSION) |
| PublicationTitleAbbrev | FUSION |
| PublicationYear | 2024 |
| Publisher | ISIF |
| Publisher_xml | – name: ISIF |
| Score | 1.8755599 |
| Snippet | This paper deals with state estimation of nonlinear stochastic dynamic models. In particular, the stochastic integration rule, which provides asymptotically... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1 |
| SubjectTerms | Filtering Filtering algorithms Heuristic algorithms Kalman filters MATLAB Nonlinear systems Prediction Prediction algorithms Random variables Smoothing Smoothing methods State estimation Stochastic integration rule Stochastic processes Stone Soup |
| Title | Stochastic Integration Based Estimator: Robust Design and Stone Soup Implementation |
| URI | https://ieeexplore.ieee.org/document/10706476 |
| WOSCitedRecordID | wos001334560000204&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwGA1uePCk4sTf5OC1s2uSJvGobijIGM7BbiM_cYe1Y2v9-_2SdooHD0IOIVACL6Tf95LvvSB0S4SFPNnSRDBpEqqNhz3nfUJdaiCjIFTyKBR-5eOxmM_lpBWrRy2Mcy4Wn7l-6Ma7fFuaOhyVwQ7nQRuZd1CHc96ItRoj0YzIgbwbzcIPiAGDCEVbGe3vPvj1dEqMHKPDf855hHo_Gjw8-Y4ux2jPFSdoOq1K86GCtzJ-aY0eAFj8ALHI4iGMrwKJvsdvpa63FX6K9RlYFRZH1208Les1jo7Aq1Z0VPTQbDR8f3xO2mcRkuWA51XCpPJCyUFmNVOpAwZkBPCKNNcp8VQC9kZ5DYGcCAf8zTDLaU49ZZ6k3hNHTlG3gCnPEJYZZ8xnmWGKwqpA44I5bSGpyjPt03PUC4gs1o3zxWIHxsUf45foIOAey1nFFepWm9pdo33zWS23m5u4Xl-J1ZfO |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5aBT2pWPFtDl637uaxm3hUW1qspdgWeiu7eWAP3S3trr_fSbpVPHgQcgiBEJghmfmS-b4gdE-FhjxZs0BwqQKWKQt7ztqAmVBBRkGZTDxRuJ8MBmI6lcOarO65MMYYX3xmWq7r3_J1oSp3VQY7PHHcyHgX7XHGSLSha22kRAmVkXzoTNwRxAFDuLItwlrbKb8-T_Gxo3P0z1WPUfOHhYeH3_HlBO2Y_BSNRmWhPlKnrox7tdQDmBY_QTTSuA3jCwejH_F7kVXrEr_4Cg2c5hp73W08Kqol9prAi5p2lDfRpNMeP3eD-mOEYB4lcRlwmVqRyojojKehAQykBCCLMM5CapkE66vUZhDKqTCA4BTXCYuZZdzS0Fpq6Blq5LDkOcKSJJxbQhRPGfgFWiK4yTSkVTHJbHiBms4is-VG-2K2NcblH-N36KA7fuvP-r3B6xU6dD7wxa3iGjXKVWVu0L76LOfr1a333Ree45sV |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2024+27th+International+Conference+on+Information+Fusion+%28FUSION%29&rft.atitle=Stochastic+Integration+Based+Estimator%3A+Robust+Design+and+Stone+Soup+Implementation&rft.au=Dunik%2C+Jindrich&rft.au=Matousek%2C+Jakub&rft.au=Straka%2C+Ondrej&rft.au=Blasch%2C+Erik&rft.date=2024-07-08&rft.pub=ISIF&rft.spage=1&rft.epage=8&rft_id=info:doi/10.23919%2FFUSION59988.2024.10706476&rft.externalDocID=10706476 |