Accurate Prior-centric Monocular Positioning with Offline LiDAR Fusion
Unmanned vehicles usually rely on Global Positioning System (GPS) and Light Detection and Ranging (LiDAR) sensors to achieve high-precision localization results for navigation purpose. However, this combination with their associated costs and infrastructure demands, poses challenges for widespread a...
Gespeichert in:
| Veröffentlicht in: | 2024 IEEE International Conference on Robotics and Automation (ICRA) S. 11934 - 11940 |
|---|---|
| Hauptverfasser: | , , , , , |
| Format: | Tagungsbericht |
| Sprache: | Englisch |
| Veröffentlicht: |
IEEE
13.05.2024
|
| Schlagworte: | |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Unmanned vehicles usually rely on Global Positioning System (GPS) and Light Detection and Ranging (LiDAR) sensors to achieve high-precision localization results for navigation purpose. However, this combination with their associated costs and infrastructure demands, poses challenges for widespread adoption in mass-market applications. In this paper, we aim to use only a monocular camera to achieve comparable onboard localization performance by tracking deep-learning visual features on a LiDAR-enhanced visual prior map. Experiments show that the proposed algorithm can provide centimeter-level global positioning results with scale, which is effortlessly integrated and favorable for low-cost robot system deployment in real-world applications. |
|---|---|
| AbstractList | Unmanned vehicles usually rely on Global Positioning System (GPS) and Light Detection and Ranging (LiDAR) sensors to achieve high-precision localization results for navigation purpose. However, this combination with their associated costs and infrastructure demands, poses challenges for widespread adoption in mass-market applications. In this paper, we aim to use only a monocular camera to achieve comparable onboard localization performance by tracking deep-learning visual features on a LiDAR-enhanced visual prior map. Experiments show that the proposed algorithm can provide centimeter-level global positioning results with scale, which is effortlessly integrated and favorable for low-cost robot system deployment in real-world applications. |
| Author | Jiao, Jianhao Liu, Chengju Zhang, Shuyang Liu, Ming He, Jinhao Huang, Huaiyang |
| Author_xml | – sequence: 1 givenname: Jinhao surname: He fullname: He, Jinhao organization: The Hong Kong University of Science and Technology (Guangzhou),Thrust of Robotics and Autonomous Systems,Guangzhou,China – sequence: 2 givenname: Huaiyang surname: Huang fullname: Huang, Huaiyang organization: Baidu Autonomous Driving Technology Department (ADT) – sequence: 3 givenname: Shuyang surname: Zhang fullname: Zhang, Shuyang organization: The Hong Kong University of Science and Technology,Department of Electronic and Computer Engineering,Clear Water Bay, Kowloon,Hong Kong – sequence: 4 givenname: Jianhao surname: Jiao fullname: Jiao, Jianhao email: ucacjji@ucl.ac.uk organization: The Hong Kong University of Science and Technology,Department of Electronic and Computer Engineering,Clear Water Bay, Kowloon,Hong Kong – sequence: 5 givenname: Chengju surname: Liu fullname: Liu, Chengju organization: Tongji University,School of Electronics and Information Engineering,Shanghai,China – sequence: 6 givenname: Ming surname: Liu fullname: Liu, Ming organization: The Hong Kong University of Science and Technology (Guangzhou),Thrust of Robotics and Autonomous Systems,Guangzhou,China |
| BookMark | eNo1j99KwzAcRiO4C517A8G8QGv-NsllqVYHlY0xr0eaJfqDmkjaIr69BfXqwDnwwXeNLmOKHqE7SkpKibnfNodaKipUyQgTJSUVXby8QBujjOaScC2kEleorZ2bs5083mdIuXA-ThkcfkkxuXmwGe_TCBOkCPENf8H0jnchDBA97uChPuB2Hpd4g1bBDqPf_HGNXtvHY_NcdLunbVN3BVBVTYWQPDBdKRN48MQaGhh3VLCweNUzo8-6Z9IyqnQle66EslZqE0zPz5J5ztfo9ncXvPenzwwfNn-f_u_xHxmgSS0 |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IH CBEJK RIE RIO |
| DOI | 10.1109/ICRA57147.2024.10611105 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE/IET Electronic Library IEEE Proceedings Order Plans (POP) 1998-present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 9798350384574 |
| EndPage | 11940 |
| ExternalDocumentID | 10611105 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 10.13039/501100001809 |
| GroupedDBID | 6IE 6IH CBEJK RIE RIO |
| ID | FETCH-LOGICAL-i176t-453f28679f3fe0a91f23c142f53f7b298d8b25a217865b3747aa589f9b3d52e33 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001369728002067&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Aug 14 05:40:32 EDT 2024 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i176t-453f28679f3fe0a91f23c142f53f7b298d8b25a217865b3747aa589f9b3d52e33 |
| PageCount | 7 |
| ParticipantIDs | ieee_primary_10611105 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-May-13 |
| PublicationDateYYYYMMDD | 2024-05-13 |
| PublicationDate_xml | – month: 05 year: 2024 text: 2024-May-13 day: 13 |
| PublicationDecade | 2020 |
| PublicationTitle | 2024 IEEE International Conference on Robotics and Automation (ICRA) |
| PublicationTitleAbbrev | ICRA |
| PublicationYear | 2024 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| Score | 1.8921771 |
| Snippet | Unmanned vehicles usually rely on Global Positioning System (GPS) and Light Detection and Ranging (LiDAR) sensors to achieve high-precision localization... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 11934 |
| SubjectTerms | Cameras Laser radar Localization Location awareness Robot vision systems Robotics in Under-Resourced Settings Robustness Sensor Fusion Sensor systems Visualization |
| Title | Accurate Prior-centric Monocular Positioning with Offline LiDAR Fusion |
| URI | https://ieeexplore.ieee.org/document/10611105 |
| WOSCitedRecordID | wos001369728002067&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA62ePCkYsU3OXhN27w2ybFUFwWppSj0VpJsAnvpSu36-52kq-LBg7eQByETwnwz-WYGodsq8shYCEQ6oYgQjBKrLIN3JYMubMGt8bnYhJrN9HJp5l2weo6FCSFk8lkYpmb-y68a3yZX2SiZL6CuZA_1lCp2wVodZ4uOzehxuphIRYUCs4-J4dfsX3VTstooD_-54REa_ATg4fm3ajlGe2F9gsqJ923K7ABDdbMhmVdZewzPsslsUjzvGFiwBicHK36OMcFI_FTfTRa4bJNrbIBey_uX6QPpyiCQmqpiS4QEcaa8eCDWMLaGRsY9FSxCv3LM6Eo7Ji3YFrqQjoN9YK3UJhrHK8kC56eov27W4QxhgNMWEIougpXCUaMBrVQuJbGrtAUocY4GSQirt12mi9XX-S_-6L9EB0nU6Ted8ivU327acI32_ce2ft_c5Pv5BA_SkOI |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagIMEEiCLeeGBNqV-xPVaFqBWlVFWRulW240hZGlQafj9nNwUxMLBZdpwoZ1n33d13dwjd5wUrKPU-EZbLhHNKEiMNhXslvEpNyox2sdmEHI_VfK4nTbJ6zIXx3kfyme-EYYzl55Wrg6vsIZgvoK7ELtoT8NruJl2rYW2Rrn4Y9qc9IQmXYPhR3tk-_6tzSlQc2dE_P3mM2j8peHjyrVxO0I5fnqKs51wdajvAUlmtksisLB2Gi1lFPimeNBws2IODixW_FkUAknhUPvamOKuDc6yN3rKnWX-QNI0QkpLIdJ1wAQINlfFAsL5rNCkoc4TTAualpVrlylJhwLpQqbAMLARjhNKFtiwX1DN2hlrLaunPEQZAbQCjqNQbwS3RCvBKbkMZu1wZABMXqB2EsHjf1LpYbP__8o_5O3QwmL2MFqPh-PkKHQaxh9g6YdeotV7V_gbtu891-bG6jWf1BcxFlCk |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2024+IEEE+International+Conference+on+Robotics+and+Automation+%28ICRA%29&rft.atitle=Accurate+Prior-centric+Monocular+Positioning+with+Offline+LiDAR+Fusion&rft.au=He%2C+Jinhao&rft.au=Huang%2C+Huaiyang&rft.au=Zhang%2C+Shuyang&rft.au=Jiao%2C+Jianhao&rft.date=2024-05-13&rft.pub=IEEE&rft.spage=11934&rft.epage=11940&rft_id=info:doi/10.1109%2FICRA57147.2024.10611105&rft.externalDocID=10611105 |