Improved Multi-Type Vehicle Recognition with a Customized YOLO
Introducing a novel strategy designed to enhance urban mobility through intelligent traffic management, this research employs a customized YOLO (You Only Look Once) object detection system. The system seamlessly integrates cutting-edge computer vision methodologies with real-time data processing to...
Gespeichert in:
| Veröffentlicht in: | 2024 4th International Conference on Pervasive Computing and Social Networking (ICPCSN) S. 361 - 365 |
|---|---|
| Hauptverfasser: | , |
| Format: | Tagungsbericht |
| Sprache: | Englisch |
| Veröffentlicht: |
IEEE
03.05.2024
|
| Schlagworte: | |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Introducing a novel strategy designed to enhance urban mobility through intelligent traffic management, this research employs a customized YOLO (You Only Look Once) object detection system. The system seamlessly integrates cutting-edge computer vision methodologies with real-time data processing to precisely detect and categorize various entities such as vehicles, pedestrians, and other objects within urban settings. The objective of this research work is to achieve notable advancements in accuracy, particularly concerning traffic surveillance and regulation, with a measured accuracy of 89.07%. However, challenges such as scalability, computational complexity, and data robustness need to be addressed for successful deployment and widespread adoption of these systems. The outcomes of this study showcase substantial improvements in traffic flow dynamics, evident through reduced congestion levels and bolstered safety measures, thereby underscoring the immense potential of intelligent systems in optimizing urban mobility challenges. |
|---|---|
| AbstractList | Introducing a novel strategy designed to enhance urban mobility through intelligent traffic management, this research employs a customized YOLO (You Only Look Once) object detection system. The system seamlessly integrates cutting-edge computer vision methodologies with real-time data processing to precisely detect and categorize various entities such as vehicles, pedestrians, and other objects within urban settings. The objective of this research work is to achieve notable advancements in accuracy, particularly concerning traffic surveillance and regulation, with a measured accuracy of 89.07%. However, challenges such as scalability, computational complexity, and data robustness need to be addressed for successful deployment and widespread adoption of these systems. The outcomes of this study showcase substantial improvements in traffic flow dynamics, evident through reduced congestion levels and bolstered safety measures, thereby underscoring the immense potential of intelligent systems in optimizing urban mobility challenges. |
| Author | Degadwala, Sheshang Mistry, Shivani |
| Author_xml | – sequence: 1 givenname: Shivani surname: Mistry fullname: Mistry, Shivani email: shivaniapple3010@gmail.com organization: Sigma Institute of Engineering,Dept. of Computer Engineering,Gujarat,India – sequence: 2 givenname: Sheshang surname: Degadwala fullname: Degadwala, Sheshang email: sheshang13@gmail.com organization: Sigma University,Dept. of Computer Engineering,Gujarat,India |
| BookMark | eNotjMtKw0AUQEfQhdb-gcj8QOKd98xGkOAjEI1oFVyVyeTGDuRFmir16y3o6mzOOWfkuB96JOSSQcoYuKs8e85enzRX2qYcuEwBQIsjsnTGWaFAWC2kOyXXeTdOwxfW9HHXzjFZ7Uek77iJoUX6gmH47OMch55-x3lDPc1223no4s8h-CiL8pycNL7d4vKfC_J2d7vKHpKivM-zmyKJzOg5kVxXCiquNTimDfCm8pXynAuJqlHSOWSNs8wZG3RAbuuARloMwH3tGIgFufj7RkRcj1Ps_LRfM9BgDp74BUZJRkA |
| CODEN | IEEPAD |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/ICPCSN62568.2024.00063 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 9798350386349 |
| EndPage | 365 |
| ExternalDocumentID | 10607748 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IL CBEJK RIE RIL |
| ID | FETCH-LOGICAL-i176t-426b50b2660916702fbab5a2234e5f5499e1f981978c6ce28dce748ec02ad9103 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001289477900056&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Aug 07 05:31:02 EDT 2024 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i176t-426b50b2660916702fbab5a2234e5f5499e1f981978c6ce28dce748ec02ad9103 |
| PageCount | 5 |
| ParticipantIDs | ieee_primary_10607748 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-May-3 |
| PublicationDateYYYYMMDD | 2024-05-03 |
| PublicationDate_xml | – month: 05 year: 2024 text: 2024-May-3 day: 03 |
| PublicationDecade | 2020 |
| PublicationTitle | 2024 4th International Conference on Pervasive Computing and Social Networking (ICPCSN) |
| PublicationTitleAbbrev | ICPCSN |
| PublicationYear | 2024 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| Score | 1.8914047 |
| Snippet | Introducing a novel strategy designed to enhance urban mobility through intelligent traffic management, this research employs a customized YOLO (You Only Look... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 361 |
| SubjectTerms | Accuracy Deep Learning Modified YOLO Detector Object Detection Robustness Scalability Smart Traffic Management Social networking (online) Surveillance Traffic control Traffic Flow Optimization Urban Mobility YOLO |
| Title | Improved Multi-Type Vehicle Recognition with a Customized YOLO |
| URI | https://ieeexplore.ieee.org/document/10607748 |
| WOSCitedRecordID | wos001289477900056&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZoxcAEiCLe8sAacNL4kYUlogKpSiMeVZkqO76IDqRVaRn49dy5LbAwsFmWLD9O1neffd8dY5dGeZJL2kh6ZDppmqSRlQ5bBjKZIHszocbSsK-LwoxGWbkWqwctDACE4DO4omb4y_fTaklPZXjDlUB3xbRYS2u9EmutVb-xyK7v8zJ_LNChVxSzlVBabEHpPX-VTQmo0dv953x7rPOjv-PlN7Lssy1oDtjNiv-D50E0GxGD5EN4JcPzh00c0LTh9LTKLc-X6Ne9TT5xwMugP-iw597tU34XrasfRJNYq0WE0OmkcAigCOlKi6R21kmLcJ6CrInWQVxneJTaVFTWy_gKcK1QicR6dAK6h6zdTBs4YtzJunKA1nDIQY0EY1QtY1DK-tgoJ45ZhzY_nq0SXIw3-z75o_-U7dD5hri_7hlrL-ZLOGfb1cdi8j6_CGb5AsKEjk8 |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED1BQYIJEEV844E1kKSx4ywsEVUrQlpBqcpU2fFFZCBFpWXg13N2W2BhYLMixY59st69y707gEspjJVLKo8bYjpRFEae4ppGEhMeEnuTrsfSMIvzXI5GSX8pVndaGER0yWd4ZYfuX76ZFHMbKqMbLnxyV-Q6bHCaNljItZa638BPrrtpP33MyaUXNmsrtIWxfVvg81fjFIcb7Z1_rrgLzR8FHut_Y8serGG9DzeLCAAa5mSznuWQbIgv1vTsYZUJNKmZDa4yxdI5eXav1Se98NzLek14at8O0o637H_gVUEsZh6Bp-a-JgglUBexH5Zaaa4I0CPkpSV2GJQJHWYsC9vYS5oC6Vux8ENlyA1oHUCjntR4CEzzstBI9tDEQiVHKUXJAxRCmUAK7R9B025-_LYocTFe7fv4j-cXsNUZ3GfjrJvfncC2PWuXBdg6hcZsOscz2Cw-ZtX79NyZ6AtbnZGW |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2024+4th+International+Conference+on+Pervasive+Computing+and+Social+Networking+%28ICPCSN%29&rft.atitle=Improved+Multi-Type+Vehicle+Recognition+with+a+Customized+YOLO&rft.au=Mistry%2C+Shivani&rft.au=Degadwala%2C+Sheshang&rft.date=2024-05-03&rft.pub=IEEE&rft.spage=361&rft.epage=365&rft_id=info:doi/10.1109%2FICPCSN62568.2024.00063&rft.externalDocID=10607748 |