Improved Multi-Type Vehicle Recognition with a Customized YOLO

Introducing a novel strategy designed to enhance urban mobility through intelligent traffic management, this research employs a customized YOLO (You Only Look Once) object detection system. The system seamlessly integrates cutting-edge computer vision methodologies with real-time data processing to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2024 4th International Conference on Pervasive Computing and Social Networking (ICPCSN) S. 361 - 365
Hauptverfasser: Mistry, Shivani, Degadwala, Sheshang
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 03.05.2024
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Introducing a novel strategy designed to enhance urban mobility through intelligent traffic management, this research employs a customized YOLO (You Only Look Once) object detection system. The system seamlessly integrates cutting-edge computer vision methodologies with real-time data processing to precisely detect and categorize various entities such as vehicles, pedestrians, and other objects within urban settings. The objective of this research work is to achieve notable advancements in accuracy, particularly concerning traffic surveillance and regulation, with a measured accuracy of 89.07%. However, challenges such as scalability, computational complexity, and data robustness need to be addressed for successful deployment and widespread adoption of these systems. The outcomes of this study showcase substantial improvements in traffic flow dynamics, evident through reduced congestion levels and bolstered safety measures, thereby underscoring the immense potential of intelligent systems in optimizing urban mobility challenges.
AbstractList Introducing a novel strategy designed to enhance urban mobility through intelligent traffic management, this research employs a customized YOLO (You Only Look Once) object detection system. The system seamlessly integrates cutting-edge computer vision methodologies with real-time data processing to precisely detect and categorize various entities such as vehicles, pedestrians, and other objects within urban settings. The objective of this research work is to achieve notable advancements in accuracy, particularly concerning traffic surveillance and regulation, with a measured accuracy of 89.07%. However, challenges such as scalability, computational complexity, and data robustness need to be addressed for successful deployment and widespread adoption of these systems. The outcomes of this study showcase substantial improvements in traffic flow dynamics, evident through reduced congestion levels and bolstered safety measures, thereby underscoring the immense potential of intelligent systems in optimizing urban mobility challenges.
Author Degadwala, Sheshang
Mistry, Shivani
Author_xml – sequence: 1
  givenname: Shivani
  surname: Mistry
  fullname: Mistry, Shivani
  email: shivaniapple3010@gmail.com
  organization: Sigma Institute of Engineering,Dept. of Computer Engineering,Gujarat,India
– sequence: 2
  givenname: Sheshang
  surname: Degadwala
  fullname: Degadwala, Sheshang
  email: sheshang13@gmail.com
  organization: Sigma University,Dept. of Computer Engineering,Gujarat,India
BookMark eNotjMtKw0AUQEfQhdb-gcj8QOKd98xGkOAjEI1oFVyVyeTGDuRFmir16y3o6mzOOWfkuB96JOSSQcoYuKs8e85enzRX2qYcuEwBQIsjsnTGWaFAWC2kOyXXeTdOwxfW9HHXzjFZ7Uek77iJoUX6gmH47OMch55-x3lDPc1223no4s8h-CiL8pycNL7d4vKfC_J2d7vKHpKivM-zmyKJzOg5kVxXCiquNTimDfCm8pXynAuJqlHSOWSNs8wZG3RAbuuARloMwH3tGIgFufj7RkRcj1Ps_LRfM9BgDp74BUZJRkA
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICPCSN62568.2024.00063
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798350386349
EndPage 365
ExternalDocumentID 10607748
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i176t-426b50b2660916702fbab5a2234e5f5499e1f981978c6ce28dce748ec02ad9103
IEDL.DBID RIE
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001289477900056&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 07 05:31:02 EDT 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i176t-426b50b2660916702fbab5a2234e5f5499e1f981978c6ce28dce748ec02ad9103
PageCount 5
ParticipantIDs ieee_primary_10607748
PublicationCentury 2000
PublicationDate 2024-May-3
PublicationDateYYYYMMDD 2024-05-03
PublicationDate_xml – month: 05
  year: 2024
  text: 2024-May-3
  day: 03
PublicationDecade 2020
PublicationTitle 2024 4th International Conference on Pervasive Computing and Social Networking (ICPCSN)
PublicationTitleAbbrev ICPCSN
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8914047
Snippet Introducing a novel strategy designed to enhance urban mobility through intelligent traffic management, this research employs a customized YOLO (You Only Look...
SourceID ieee
SourceType Publisher
StartPage 361
SubjectTerms Accuracy
Deep Learning
Modified YOLO Detector
Object Detection
Robustness
Scalability
Smart Traffic Management
Social networking (online)
Surveillance
Traffic control
Traffic Flow Optimization
Urban Mobility
YOLO
Title Improved Multi-Type Vehicle Recognition with a Customized YOLO
URI https://ieeexplore.ieee.org/document/10607748
WOSCitedRecordID wos001289477900056&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZoxcAEiCLe8sAacNL4kYUlogKpSiMeVZkqO76IDqRVaRn49dy5LbAwsFmWLD9O1neffd8dY5dGeZJL2kh6ZDppmqSRlQ5bBjKZIHszocbSsK-LwoxGWbkWqwctDACE4DO4omb4y_fTaklPZXjDlUB3xbRYS2u9EmutVb-xyK7v8zJ_LNChVxSzlVBabEHpPX-VTQmo0dv953x7rPOjv-PlN7Lssy1oDtjNiv-D50E0GxGD5EN4JcPzh00c0LTh9LTKLc-X6Ne9TT5xwMugP-iw597tU34XrasfRJNYq0WE0OmkcAigCOlKi6R21kmLcJ6CrInWQVxneJTaVFTWy_gKcK1QicR6dAK6h6zdTBs4YtzJunKA1nDIQY0EY1QtY1DK-tgoJ45ZhzY_nq0SXIw3-z75o_-U7dD5hri_7hlrL-ZLOGfb1cdi8j6_CGb5AsKEjk8
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED1BQYIJEEV844E1kKSx4ywsEVUrQlpBqcpU2fFFZCBFpWXg13N2W2BhYLMixY59st69y707gEspjJVLKo8bYjpRFEae4ppGEhMeEnuTrsfSMIvzXI5GSX8pVndaGER0yWd4ZYfuX76ZFHMbKqMbLnxyV-Q6bHCaNljItZa638BPrrtpP33MyaUXNmsrtIWxfVvg81fjFIcb7Z1_rrgLzR8FHut_Y8serGG9DzeLCAAa5mSznuWQbIgv1vTsYZUJNKmZDa4yxdI5eXav1Se98NzLek14at8O0o637H_gVUEsZh6Bp-a-JgglUBexH5Zaaa4I0CPkpSV2GJQJHWYsC9vYS5oC6Vux8ENlyA1oHUCjntR4CEzzstBI9tDEQiVHKUXJAxRCmUAK7R9B025-_LYocTFe7fv4j-cXsNUZ3GfjrJvfncC2PWuXBdg6hcZsOscz2Cw-ZtX79NyZ6AtbnZGW
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2024+4th+International+Conference+on+Pervasive+Computing+and+Social+Networking+%28ICPCSN%29&rft.atitle=Improved+Multi-Type+Vehicle+Recognition+with+a+Customized+YOLO&rft.au=Mistry%2C+Shivani&rft.au=Degadwala%2C+Sheshang&rft.date=2024-05-03&rft.pub=IEEE&rft.spage=361&rft.epage=365&rft_id=info:doi/10.1109%2FICPCSN62568.2024.00063&rft.externalDocID=10607748