Robust Method for Network Topology Identification Under Structural Equation Model

We present a robust method to infer network topology in the presence of outliers from given observations at nodes under the structural equation model. We introduce auxiliary matrices modeling Gaussian noise and sparse outliers. The topology identification task is cast as a minimization problem of th...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2024 IEEE 34th International Workshop on Machine Learning for Signal Processing (MLSP) s. 1 - 6
Hlavní autoři: Yoshida, Kohei, Yukawa, Masahiro
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 22.09.2024
Témata:
ISSN:2161-0371
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract We present a robust method to infer network topology in the presence of outliers from given observations at nodes under the structural equation model. We introduce auxiliary matrices modeling Gaussian noise and sparse outliers. The topology identification task is cast as a minimization problem of the sum of three terms under constraints involving a bilinear form: (i) the squared Frobenius norm of the noise matrix, (ii) the \ell_{1} norm of the adjacency matrix, and (iii) a weakly-convex sparsity-promoting function (the minimax concave penalty) of the outlier matrix. The problem is reformulated into an unconstrained optimization problem by introducing a linear operator, and an efficient alternating minimization method is presented. Simulation results show remarkable robustness of the proposed method.
AbstractList We present a robust method to infer network topology in the presence of outliers from given observations at nodes under the structural equation model. We introduce auxiliary matrices modeling Gaussian noise and sparse outliers. The topology identification task is cast as a minimization problem of the sum of three terms under constraints involving a bilinear form: (i) the squared Frobenius norm of the noise matrix, (ii) the \ell_{1} norm of the adjacency matrix, and (iii) a weakly-convex sparsity-promoting function (the minimax concave penalty) of the outlier matrix. The problem is reformulated into an unconstrained optimization problem by introducing a linear operator, and an efficient alternating minimization method is presented. Simulation results show remarkable robustness of the proposed method.
Author Yoshida, Kohei
Yukawa, Masahiro
Author_xml – sequence: 1
  givenname: Kohei
  surname: Yoshida
  fullname: Yoshida, Kohei
  organization: Keio University,Department of Electronics and Electrical Engineering,Yokohama,Japan
– sequence: 2
  givenname: Masahiro
  surname: Yukawa
  fullname: Yukawa, Masahiro
  organization: Keio University,Department of Electronics and Electrical Engineering,Yokohama,Japan
BookMark eNo1kMtKAzEYhaMoWOu8gWBeYOqfy-SylFK10Hpruy7JJKPBcVIzGaRvb6G6OufjwLc4l-isi51H6IbAhBDQt8vF6qVSmsKEAuUTApJxBfIEFVpqxSpgktIKTtGIEkHKA5ILVPR9sFAxApUAMkKvb9EOfcZLnz-iw01M-Mnnn5g-8TruYhvf93jufJdDE2qTQ-zwpnM-4VVOQ52HZFo8-x6OyzI6316h88a0vS_-cow297P19LFcPD_Mp3eLMhApcskaBtzxWmlttDJCEMmZ1VaoxlhHGRPm0Jzj1oIGppUTVljmhZTOWW7ZGF0fvcF7v92l8GXSfvv_AvsFxj1UkQ
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/MLSP58920.2024.10734807
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798350372250
EISSN 2161-0371
EndPage 6
ExternalDocumentID 10734807
Genre orig-research
GrantInformation_xml – fundername: JSPS Grants-in-Aid
  grantid: 22H01492
  funderid: 10.13039/501100001691
GroupedDBID 6IE
6IL
ABLEC
ALMA_UNASSIGNED_HOLDINGS
CBEJK
IEGSK
RIE
RIL
ID FETCH-LOGICAL-i176t-3f304d4c899a98a661743b9b68fabd2336a8fadd4bb090398d6b6b3e677ddb4b3
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001422233600091&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Nov 13 06:11:48 EST 2024
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i176t-3f304d4c899a98a661743b9b68fabd2336a8fadd4bb090398d6b6b3e677ddb4b3
PageCount 6
ParticipantIDs ieee_primary_10734807
PublicationCentury 2000
PublicationDate 2024-Sept.-22
PublicationDateYYYYMMDD 2024-09-22
PublicationDate_xml – month: 09
  year: 2024
  text: 2024-Sept.-22
  day: 22
PublicationDecade 2020
PublicationTitle 2024 IEEE 34th International Workshop on Machine Learning for Signal Processing (MLSP)
PublicationTitleAbbrev MLSP
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssib053105601
ssib050693520
Score 2.2690198
Snippet We present a robust method to infer network topology in the presence of outliers from given observations at nodes under the structural equation model. We...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms graph learning
Mathematical models
Minimization methods
Network topology
operator splitting algorithm
outlier robustness
Pollution measurement
Robustness
Signal processing algorithms
Simulation
Sparse matrices
structural equation model
Topology
Vectors
Title Robust Method for Network Topology Identification Under Structural Equation Model
URI https://ieeexplore.ieee.org/document/10734807
WOSCitedRecordID wos001422233600091&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEA1aPHhSseI3OXjdmt2kyeYsLR7aUm2F3ko-oSCt2q3gv3cmu6148OAtLMuymUyYmWTee4TcKchhtZMiU5GFTOQG9lzs2kwFwbhjzmqb2PUHajQqZzM9bsDqCQsTQkjNZ6GDw3SX71dug0dlsMORiwWx4_tKqRqstXWeLpMakomd84FvMaw2mp6unOn74WAy7pa6YFAWFqKz_dovXZUUVvpH__yhY9L-AejR8S70nJC9sDwlT88ru1lXdJhEoSlko3RUN3nTaS2F8EVrXG5sDupoUj2ik8Qhi_wbtPdeU39T1Eh7bZOXfm_68Jg1ignZIleyynjkTHjhoIgyujQQeyFBAHPLMhrrC86lgZH3wlo8n9Gll1ZaHqRS3lth-RlpLVfLcE4oJorclcYZjVPk8JbQ0ePFX25lzC9IG-0xf6tJMeZbU1z-8fyKHKLVsdWiKK5JC2YWbsiB-6wW64_btJTf6h2eWA
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8MwGA6igp5UnPhtDl470yZNmrNsTOzKdBN2G_mEgWzqNsF_75u0m3jw4C2UUprkDe9H3ud5ELoVEMNKw1kiPHEJSxWcOZ_rRDhGqCFGSx3Z9UtRVcV4LAcNWD1iYZxzsfnMtcMw3uXbuVmFUhmc8MDFErDjOzljWVrDtdbmkxMuIZzYmB9YFwn5RtPVlRJ51y-Hg7yQGYHEMGPt9fd-KatEx9I9-OcvHaLWD0QPDzbO5whtudkxenqe69ViiftRFhpDPIqrus0bj2oxhC9cI3N9U6rDUfcIDyOLbGDgwJ33mvwbB5W01xZ66XZG972k0UxIpqngy4R6SphlBtIoJQsF3hdCBFhwXnilbUYpVzCylmkdKjSysFxzTR0XwlrNND1B27P5zJ0iHEJFagpllAxTpPAWk96Gq79Uc5-eoVZYj8lbTYsxWS_F-R_Pb9Beb9QvJ-VD9XiB9sMOhMaLLLtE2zBLd4V2zedyuvi4jtv6DVd5oZ8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2024+IEEE+34th+International+Workshop+on+Machine+Learning+for+Signal+Processing+%28MLSP%29&rft.atitle=Robust+Method+for+Network+Topology+Identification+Under+Structural+Equation+Model&rft.au=Yoshida%2C+Kohei&rft.au=Yukawa%2C+Masahiro&rft.date=2024-09-22&rft.pub=IEEE&rft.eissn=2161-0371&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FMLSP58920.2024.10734807&rft.externalDocID=10734807