Robust Method for Network Topology Identification Under Structural Equation Model
We present a robust method to infer network topology in the presence of outliers from given observations at nodes under the structural equation model. We introduce auxiliary matrices modeling Gaussian noise and sparse outliers. The topology identification task is cast as a minimization problem of th...
Uloženo v:
| Vydáno v: | 2024 IEEE 34th International Workshop on Machine Learning for Signal Processing (MLSP) s. 1 - 6 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
22.09.2024
|
| Témata: | |
| ISSN: | 2161-0371 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | We present a robust method to infer network topology in the presence of outliers from given observations at nodes under the structural equation model. We introduce auxiliary matrices modeling Gaussian noise and sparse outliers. The topology identification task is cast as a minimization problem of the sum of three terms under constraints involving a bilinear form: (i) the squared Frobenius norm of the noise matrix, (ii) the \ell_{1} norm of the adjacency matrix, and (iii) a weakly-convex sparsity-promoting function (the minimax concave penalty) of the outlier matrix. The problem is reformulated into an unconstrained optimization problem by introducing a linear operator, and an efficient alternating minimization method is presented. Simulation results show remarkable robustness of the proposed method. |
|---|---|
| AbstractList | We present a robust method to infer network topology in the presence of outliers from given observations at nodes under the structural equation model. We introduce auxiliary matrices modeling Gaussian noise and sparse outliers. The topology identification task is cast as a minimization problem of the sum of three terms under constraints involving a bilinear form: (i) the squared Frobenius norm of the noise matrix, (ii) the \ell_{1} norm of the adjacency matrix, and (iii) a weakly-convex sparsity-promoting function (the minimax concave penalty) of the outlier matrix. The problem is reformulated into an unconstrained optimization problem by introducing a linear operator, and an efficient alternating minimization method is presented. Simulation results show remarkable robustness of the proposed method. |
| Author | Yoshida, Kohei Yukawa, Masahiro |
| Author_xml | – sequence: 1 givenname: Kohei surname: Yoshida fullname: Yoshida, Kohei organization: Keio University,Department of Electronics and Electrical Engineering,Yokohama,Japan – sequence: 2 givenname: Masahiro surname: Yukawa fullname: Yukawa, Masahiro organization: Keio University,Department of Electronics and Electrical Engineering,Yokohama,Japan |
| BookMark | eNo1kMtKAzEYhaMoWOu8gWBeYOqfy-SylFK10Hpruy7JJKPBcVIzGaRvb6G6OufjwLc4l-isi51H6IbAhBDQt8vF6qVSmsKEAuUTApJxBfIEFVpqxSpgktIKTtGIEkHKA5ILVPR9sFAxApUAMkKvb9EOfcZLnz-iw01M-Mnnn5g-8TruYhvf93jufJdDE2qTQ-zwpnM-4VVOQ52HZFo8-x6OyzI6316h88a0vS_-cow297P19LFcPD_Mp3eLMhApcskaBtzxWmlttDJCEMmZ1VaoxlhHGRPm0Jzj1oIGppUTVljmhZTOWW7ZGF0fvcF7v92l8GXSfvv_AvsFxj1UkQ |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/MLSP58920.2024.10734807 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 9798350372250 |
| EISSN | 2161-0371 |
| EndPage | 6 |
| ExternalDocumentID | 10734807 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: JSPS Grants-in-Aid grantid: 22H01492 funderid: 10.13039/501100001691 |
| GroupedDBID | 6IE 6IL ABLEC ALMA_UNASSIGNED_HOLDINGS CBEJK IEGSK RIE RIL |
| ID | FETCH-LOGICAL-i176t-3f304d4c899a98a661743b9b68fabd2336a8fadd4bb090398d6b6b3e677ddb4b3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001422233600091&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Nov 13 06:11:48 EST 2024 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i176t-3f304d4c899a98a661743b9b68fabd2336a8fadd4bb090398d6b6b3e677ddb4b3 |
| PageCount | 6 |
| ParticipantIDs | ieee_primary_10734807 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-Sept.-22 |
| PublicationDateYYYYMMDD | 2024-09-22 |
| PublicationDate_xml | – month: 09 year: 2024 text: 2024-Sept.-22 day: 22 |
| PublicationDecade | 2020 |
| PublicationTitle | 2024 IEEE 34th International Workshop on Machine Learning for Signal Processing (MLSP) |
| PublicationTitleAbbrev | MLSP |
| PublicationYear | 2024 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssib053105601 ssib050693520 |
| Score | 2.2690198 |
| Snippet | We present a robust method to infer network topology in the presence of outliers from given observations at nodes under the structural equation model. We... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1 |
| SubjectTerms | graph learning Mathematical models Minimization methods Network topology operator splitting algorithm outlier robustness Pollution measurement Robustness Signal processing algorithms Simulation Sparse matrices structural equation model Topology Vectors |
| Title | Robust Method for Network Topology Identification Under Structural Equation Model |
| URI | https://ieeexplore.ieee.org/document/10734807 |
| WOSCitedRecordID | wos001422233600091&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEA1aPHhSseI3OXjdmt2kyeYsLR7aUm2F3ko-oSCt2q3gv3cmu6148OAtLMuymUyYmWTee4TcKchhtZMiU5GFTOQG9lzs2kwFwbhjzmqb2PUHajQqZzM9bsDqCQsTQkjNZ6GDw3SX71dug0dlsMORiwWx4_tKqRqstXWeLpMakomd84FvMaw2mp6unOn74WAy7pa6YFAWFqKz_dovXZUUVvpH__yhY9L-AejR8S70nJC9sDwlT88ru1lXdJhEoSlko3RUN3nTaS2F8EVrXG5sDupoUj2ik8Qhi_wbtPdeU39T1Eh7bZOXfm_68Jg1ignZIleyynjkTHjhoIgyujQQeyFBAHPLMhrrC86lgZH3wlo8n9Gll1ZaHqRS3lth-RlpLVfLcE4oJorclcYZjVPk8JbQ0ePFX25lzC9IG-0xf6tJMeZbU1z-8fyKHKLVsdWiKK5JC2YWbsiB-6wW64_btJTf6h2eWA |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8MwGA6igp5UnPhtDl470yZNmrNsTOzKdBN2G_mEgWzqNsF_75u0m3jw4C2UUprkDe9H3ud5ELoVEMNKw1kiPHEJSxWcOZ_rRDhGqCFGSx3Z9UtRVcV4LAcNWD1iYZxzsfnMtcMw3uXbuVmFUhmc8MDFErDjOzljWVrDtdbmkxMuIZzYmB9YFwn5RtPVlRJ51y-Hg7yQGYHEMGPt9fd-KatEx9I9-OcvHaLWD0QPDzbO5whtudkxenqe69ViiftRFhpDPIqrus0bj2oxhC9cI3N9U6rDUfcIDyOLbGDgwJ33mvwbB5W01xZ66XZG972k0UxIpqngy4R6SphlBtIoJQsF3hdCBFhwXnilbUYpVzCylmkdKjSysFxzTR0XwlrNND1B27P5zJ0iHEJFagpllAxTpPAWk96Gq79Uc5-eoVZYj8lbTYsxWS_F-R_Pb9Beb9QvJ-VD9XiB9sMOhMaLLLtE2zBLd4V2zedyuvi4jtv6DVd5oZ8 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2024+IEEE+34th+International+Workshop+on+Machine+Learning+for+Signal+Processing+%28MLSP%29&rft.atitle=Robust+Method+for+Network+Topology+Identification+Under+Structural+Equation+Model&rft.au=Yoshida%2C+Kohei&rft.au=Yukawa%2C+Masahiro&rft.date=2024-09-22&rft.pub=IEEE&rft.eissn=2161-0371&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FMLSP58920.2024.10734807&rft.externalDocID=10734807 |