Hypergraph Neural Networks Based on Enclosing Subgraph Extraction for Link Prediction
Recently, the link prediction methods based on enclosing subgraph extraction and line graph transformation have been proven to achieve excellent prediction accuracy, but there are still some shortcomings, for examples, the time and space complexity of line graph transformation is too high and the gr...
Uloženo v:
| Vydáno v: | Proceedings - International Conference on Parallel and Distributed Systems s. 455 - 461 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
10.10.2024
|
| Témata: | |
| ISSN: | 2690-5965 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Recently, the link prediction methods based on enclosing subgraph extraction and line graph transformation have been proven to achieve excellent prediction accuracy, but there are still some shortcomings, for examples, the time and space complexity of line graph transformation is too high and the graph neural network it used ignores the high-order relationship and local clustering structure between nodes, which makes it difficult to be widely used in real life and may affect the prediction accuracy. To solve the above problems, a hypergraph neural network model based on enclosing subgraph extraction is proposed, which converts subgraph into hypergraph by dual hypergraph transformation, and uses the hypergraph convolutional neural network to learn the higher-order features of nodes and edges respectively. After three experiments, the results show that the proposed model not only has higher prediction accuracy, but also has shorter runtime and less memory usage. |
|---|---|
| AbstractList | Recently, the link prediction methods based on enclosing subgraph extraction and line graph transformation have been proven to achieve excellent prediction accuracy, but there are still some shortcomings, for examples, the time and space complexity of line graph transformation is too high and the graph neural network it used ignores the high-order relationship and local clustering structure between nodes, which makes it difficult to be widely used in real life and may affect the prediction accuracy. To solve the above problems, a hypergraph neural network model based on enclosing subgraph extraction is proposed, which converts subgraph into hypergraph by dual hypergraph transformation, and uses the hypergraph convolutional neural network to learn the higher-order features of nodes and edges respectively. After three experiments, the results show that the proposed model not only has higher prediction accuracy, but also has shorter runtime and less memory usage. |
| Author | Chen, Liang Sajjanhar, Atul Zhao, Ying |
| Author_xml | – sequence: 1 givenname: Liang surname: Chen fullname: Chen, Liang email: 634407371@qq.com organization: Beijing University of Chemical Technology,College of Information Science and Technology,Beijing,China – sequence: 2 givenname: Ying surname: Zhao fullname: Zhao, Ying email: zhaoy@mail.buct.edu.cn organization: Beijing University of Chemical Technology,College of Information Science and Technology,Beijing,China – sequence: 3 givenname: Atul surname: Sajjanhar fullname: Sajjanhar, Atul email: atul.sajjanhar@deakin.edu.au organization: Deakin University,School of Information Technology,Geelong,Australia |
| BookMark | eNotjN9OwjAUxqvRREDewJi-wPC0Z2vXS0QUEqIkyDXp2jOs4Ea6EeXtXcSr35fvX59dVXVFjN0LGAkB5mE-WY6fVgoxg5EEmY4AQKkLNjTa5IgiE5lR6pL1pDKQdDq7Yf2m-QSQ0G16bD07HShuoz188Fc6Rrvv0H7XcdfwR9uQ53XFp5Xb102otnx1LM7d6U8brWtDl5Z15ItQ7fgykg9_3i27Lu2-oeE_B2z9PH2fzJLF28t8Ml4kQWjVJqhRkiulseQdoYScrEsxk84WKDym0mipfOpdCV4UIHIAyguthfBQlhIH7O78G4hoc4jhy8bTRoBWmKeIvxtiVJ0 |
| CODEN | IEEPAD |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/ICPADS63350.2024.00066 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISBN | 9798331515966 |
| EISSN | 2690-5965 |
| EndPage | 461 |
| ExternalDocumentID | 10763843 |
| Genre | orig-research |
| GroupedDBID | 29O 6IE 6IF 6IH 6IK 6IL 6IM 6IN AAJGR AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IPLJI OCL RIE RIL RNS |
| ID | FETCH-LOGICAL-i176t-3732ecf29aedce3208eac4352cab31d3429726d4dcf0d1b01800e8b7711d0ff23 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001481011800056&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Aug 27 01:59:32 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i176t-3732ecf29aedce3208eac4352cab31d3429726d4dcf0d1b01800e8b7711d0ff23 |
| PageCount | 7 |
| ParticipantIDs | ieee_primary_10763843 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-Oct.-10 |
| PublicationDateYYYYMMDD | 2024-10-10 |
| PublicationDate_xml | – month: 10 year: 2024 text: 2024-Oct.-10 day: 10 |
| PublicationDecade | 2020 |
| PublicationTitle | Proceedings - International Conference on Parallel and Distributed Systems |
| PublicationTitleAbbrev | ICPADS |
| PublicationYear | 2024 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0020350 |
| Score | 2.2849135 |
| Snippet | Recently, the link prediction methods based on enclosing subgraph extraction and line graph transformation have been proven to achieve excellent prediction... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 455 |
| SubjectTerms | Accuracy Complexity theory Convolutional neural networks dual hypergraph transformation Feature extraction Graph neural networks hypergraph hypergraph neural networks link prediction Memory management Predictive models Runtime |
| Title | Hypergraph Neural Networks Based on Enclosing Subgraph Extraction for Link Prediction |
| URI | https://ieeexplore.ieee.org/document/10763843 |
| WOSCitedRecordID | wos001481011800056&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF5s8eCpPiq-2YPX6D6S7OaotaWClIJWeiub7AQKJZE0FX--O5u0evHgKWEILMxmXjv7fUPIbeSyCJdY6ABikwShABvoTOC_rKPIQA7gUfzvL2oy0fN5Mm3B6h4LAwD-8hnc4avv5dsy2-BRmbNwZw06lB3SUUo1YK1ddYUtshYCzFly_zyYPjy9xtJJXRUokCObIRXirxkqPoSMev9c_JD0f8B4dLoLM0dkD4pj0ttOY6CtcZ6Q2diVlJUnoKZIuWFW7uHveK_po4tVlpYFHRbZqsTjAeo8RvPt8KuuGnQDdQksxeLUrYf9G5T1yWw0fBuMg3ZoQrDkKq6dkqWALBeJwfudUjDtXKvLiURmUsmtdPFHidiGNsuZ5SnydzHQqVKcW5bnQp6SblEWcEZootIoB5sbG7LQgDQyjUzK41zHKWbm56SPalp8NLwYi62GLv6QX5ID3An0_JxdkW5dbeCa7Gef9XJd3fjd_AaeZqHM |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF60Cnqqj4pv9-A1uo88NketLS3WUrAVb2WTnUChJJKm4s93Z9NWLx48JQyBhdnMzszOfN8QchvYKMIGFsqDUMeeL8B4KhX4L6sg0JABOBT_2yAaDtX7ezxagdUdFgYAXPMZ3OGrq-WbIl3iVZm1cGsNypfbZCfwfcFruNYmv8Ii2QoEzFl832-PHp5eQ2mlNg8UyJLNkAzx1xQV50S6zX8uf0BaP3A8Oto4mkOyBfkRaa7nMdCVeR6TSc8mlaWjoKZIuqHn9uG6vBf00XorQ4ucdvJ0XuAFAbVnRv1t56sqa3wDtSEsxfTUrocVHJS1yKTbGbd73mpsgjfjUVhZNUsBaSZijR2eUjBlD1cbFYlUJ5IbaT1QJELjmzRjhifI4MVAJVHEuWFZJuQJaeRFDqeExlESZGAybXzma5BaJoFOeJipMMHY_Iy0UE3Tj5oZY7rW0Pkf8huy1xu_DKaD_vD5guzjrqAf4OySNKpyCVdkN_2sZovy2u3sNzaFpRM |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+-+International+Conference+on+Parallel+and+Distributed+Systems&rft.atitle=Hypergraph+Neural+Networks+Based+on+Enclosing+Subgraph+Extraction+for+Link+Prediction&rft.au=Chen%2C+Liang&rft.au=Zhao%2C+Ying&rft.au=Sajjanhar%2C+Atul&rft.date=2024-10-10&rft.pub=IEEE&rft.eissn=2690-5965&rft.spage=455&rft.epage=461&rft_id=info:doi/10.1109%2FICPADS63350.2024.00066&rft.externalDocID=10763843 |