Constrained Multi-Modal Multi-Objective Evolutionary Algorithm with Problem Transformation into Two-Objective Subproblems

Real-world optimization problems often have multi-ple conflicting objective functions to be optimized simultaneously. In some of them, there are different Pareto optimal solutions with the same objective function values. Those problems are called multi-modal multi-objective optimization problems (MM...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2024 Joint 13th International Conference on Soft Computing and Intelligent Systems and 25th International Symposium on Advanced Intelligent Systems (SCIS&ISIS) s. 1 - 6
Hlavní autoři: Tokusaka, Teruhiko, Masuyama, Naoki, Nojima, Yusuke
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 09.11.2024
Témata:
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Real-world optimization problems often have multi-ple conflicting objective functions to be optimized simultaneously. In some of them, there are different Pareto optimal solutions with the same objective function values. Those problems are called multi-modal multi-objective optimization problems (MMOPs). For MMOPs, we proposed a decomposition-based multi-modal multi-objective evolutionary algorithm called MM2T in our previous study. However, MM2T does not consider constraints and thus cannot solve constrained MMOPs (CMMOPs). To apply MM2T to CMMOPs, we introduce the constrained dominance principle (CDP) into MM2T. We examine the search performance of MM2T with CDP through computational experiments.
DOI:10.1109/SCISISIS61014.2024.10760179