Enhancing Effluent Quality Predictions in Wastewater Treatment with LSTM Neural Network

This research paper delves into the application of Long Short-Term Memory (LSTM) neural networks within the Benchmark Simulation Model No. 2 (BSM2) to enhance the predictability and efficiency of wastewater treatment processes. The study aims to develop advanced predictive models that can simulate t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International Conference on System Theory, Control and Computing S. 83 - 88
Hauptverfasser: Voipan, Daniel, Vasiliev, Iulian, Diaconu, Larisa, Voipan, Andreea-Elena, Barbu, Marian
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 10.10.2024
Schlagworte:
ISSN:2473-5698
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract This research paper delves into the application of Long Short-Term Memory (LSTM) neural networks within the Benchmark Simulation Model No. 2 (BSM2) to enhance the predictability and efficiency of wastewater treatment processes. The study aims to develop advanced predictive models that can simulate the dynamics of wastewater treatment more accurately and adjust operational strategies dynamically. By integrating LSTM networks, the research enables continuous prediction of Effluent Quality Index (EQI) variables under stochastic and deterministic scenarios, thereby improving the accuracy and efficiency of predicting pollutant levels. The research uses an LSTM model to learn from a comprehensive dataset derived from historical simulations of BSM2, where key parameters such as the oxygen transfer coefficient (K L a) are systematically varied to measure their impact on effluent quality. The LSTM's capability to handle complex, nonlinear data and its adaptability to time series forecasting significantly enhances model performance, offering a robust tool for real-time decision-making and process optimization in wastewater treatment facilities. This approach not only improves the accuracy and efficiency of predicting pollutant levels but also supports environmental compliance and operational sustainability, making it a valuable tool for environmental engineers and professionals in the field of wastewater treatment.
AbstractList This research paper delves into the application of Long Short-Term Memory (LSTM) neural networks within the Benchmark Simulation Model No. 2 (BSM2) to enhance the predictability and efficiency of wastewater treatment processes. The study aims to develop advanced predictive models that can simulate the dynamics of wastewater treatment more accurately and adjust operational strategies dynamically. By integrating LSTM networks, the research enables continuous prediction of Effluent Quality Index (EQI) variables under stochastic and deterministic scenarios, thereby improving the accuracy and efficiency of predicting pollutant levels. The research uses an LSTM model to learn from a comprehensive dataset derived from historical simulations of BSM2, where key parameters such as the oxygen transfer coefficient (K L a) are systematically varied to measure their impact on effluent quality. The LSTM's capability to handle complex, nonlinear data and its adaptability to time series forecasting significantly enhances model performance, offering a robust tool for real-time decision-making and process optimization in wastewater treatment facilities. This approach not only improves the accuracy and efficiency of predicting pollutant levels but also supports environmental compliance and operational sustainability, making it a valuable tool for environmental engineers and professionals in the field of wastewater treatment.
Author Diaconu, Larisa
Voipan, Andreea-Elena
Barbu, Marian
Vasiliev, Iulian
Voipan, Daniel
Author_xml – sequence: 1
  givenname: Daniel
  surname: Voipan
  fullname: Voipan, Daniel
  email: Daniel.Voipan@ugal.ro
  organization: "Dunărea de Jos" University of Galați,Department of Computer Science and Information Technology,Galați,Romania
– sequence: 2
  givenname: Iulian
  surname: Vasiliev
  fullname: Vasiliev, Iulian
  email: Iulian.Vasiliev@ugal.ro
  organization: "Dunărea de Jos" University of Galați,Department of Automatic Control and Electrical Engineering,Galați,Romania
– sequence: 3
  givenname: Larisa
  surname: Diaconu
  fullname: Diaconu, Larisa
  email: Larisa.Diaconu@ugal.ro
  organization: "Dunărea de Jos" University of Galați,Department of Automatic Control and Electrical Engineering,Galați,Romania
– sequence: 4
  givenname: Andreea-Elena
  surname: Voipan
  fullname: Voipan, Andreea-Elena
  email: Andreea.Voipan@ugal.ro
  organization: "Dunărea de Jos" University of Galați,Department of Automatic Control and Electrical Engineering,Galați,Romania
– sequence: 5
  givenname: Marian
  surname: Barbu
  fullname: Barbu, Marian
  email: Marian.Barbu@ugal.ro
  organization: "Dunărea de Jos" University of Galați,Department of Automatic Control and Electrical Engineering,Galați,Romania
BookMark eNo1kMtOwkAYRkejiYi8gYvxAYpz61yWpkEkwVuoYUn-0r8yWgYznYbw9mLUszmbk2_xXZKzsAtIyA1nY86Zu50Vi7IotHBcjAUTasyZUUpre0JGzjgrcya1Ek6ekoFQRma5dvaCjLrugzEmuTliB2Q5CRsIax_e6aRp2h5Doq89tD4d6EvE2q-T34WO-kCX0CXcQ8JIy4iQtj_t3qcNnS_KR_qEfYT2qLTfxc8rct5A2-Hoz0Pydj8pi4ds_jydFXfzzHOjUybqugZrUecaNThw3NkckNUN5AY0b4xCBxUKrKC2SlQOreUSseKVsdLIIbn-3fWIuPqKfgvxsPr_Qn4Ds2BXgg
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICSTCC62912.2024.10744668
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library (IEL) (UW System Shared)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9798350364293
EISSN 2473-5698
EndPage 88
ExternalDocumentID 10744668
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
OCL
RIE
RIL
ID FETCH-LOGICAL-i176t-2ddda88e656e6a9a91985ae0dfa57a61f74e9abe2ebad842b9e8813eeb1b78373
IEDL.DBID RIE
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001440908400014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 03:05:32 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i176t-2ddda88e656e6a9a91985ae0dfa57a61f74e9abe2ebad842b9e8813eeb1b78373
PageCount 6
ParticipantIDs ieee_primary_10744668
PublicationCentury 2000
PublicationDate 2024-Oct.-10
PublicationDateYYYYMMDD 2024-10-10
PublicationDate_xml – month: 10
  year: 2024
  text: 2024-Oct.-10
  day: 10
PublicationDecade 2020
PublicationTitle International Conference on System Theory, Control and Computing
PublicationTitleAbbrev ICSTCC
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0003177778
Score 1.9153588
Snippet This research paper delves into the application of Long Short-Term Memory (LSTM) neural networks within the Benchmark Simulation Model No. 2 (BSM2) to enhance...
SourceID ieee
SourceType Publisher
StartPage 83
SubjectTerms Accuracy
Adaptation models
Artificial Neural Networks
BSM2
Effluent Quality
Effluents
Long short term memory
LSTM
Predictive models
Real-time systems
Stochastic processes
Time series analysis
Wastewater
Wastewater treatment
Wastewater Treatment Plants
Title Enhancing Effluent Quality Predictions in Wastewater Treatment with LSTM Neural Network
URI https://ieeexplore.ieee.org/document/10744668
WOSCitedRecordID wos001440908400014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF5sEfFUHxXfrOA1bTfZ7uMcWhRqKTTa3spsM9GCpNKmgv_e3W1S8eDBHJIQMpuwm2Qms_N9HyH3goGKIIMAQYmAQ2YCI5ld8bkNmEPNjNdYehnI4VBNp3pUgtU9FgYRffEZttyun8tPl_ONS5W1XfEgF0LVSE1KsQVr7RIq1hHaRR2Qu5JHs_0Yj5M4dhd0iKuQtyr7X0oq3pH0G_-8hSPS_IHk0dHO2RyTPcxPSKPSZKDlK3pKJr38zVFo5K-0l3n9kYJueTK-rL2blfEPGl3kdAJrlzlz5klVbk5dXpYOxskTdbQd8G43vk68SZ77vSR-CErxhGDBpCiCME1TUAptvIYCNGimVRewk2bQlSBYJjlqMBiigVTx0GhUikVov91G2r_W6IzU82WO54Tas-aZDWOUTiNuotBwFzYhGM07tm12QZquo2YfW36MWdVHl38cvyKHbjicB2Cda1IvVhu8Ifvzz2KxXt36Uf0GF5Ck_w
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFH5RNOoJf2D8bU28DtatbO2ZQCAOQsIUbqTd3pTEDAPDxP_etjCMBw_usDXL2jXttvf2-r7vA3gMqOS-zKSDkgcOk5lyVEj1jiXaYfYEVVZj6SUKBwM-mYjhBqxusTCIaJPPsG6Kdi0_nScrEyprmORBFgR8F_aajHnuGq61DaloU6g3fgAPGybNRq81ilstc0uDufJYvWzhl5aKNSWd6j87cQy1H1AeGW7NzQnsYH4K1VKVgWxe0jMYt_M3Q6KRv5J2ZhVICrJmyvjS9c26jH3UyCwnY7k0sTNTPS4TzomJzJJoFPeJIe6Q7_pgM8Vr8Nxpx62us5FPcGY0DArHS9NUco7aY8NACimo4E2JbprJZigDmoUMhVTooZIpZ54SyDn1UX-9Vaj_W_1zqOTzHC-A6KuSTDsyXKQ-U76nmHGcUCrBXN02vYSaGajpx5ohY1qO0dUf5-_hsBv3o2nUGzxdw5GZGmMPqHsDlWKxwlvYTz6L2XJxZ2f4G9o2qEY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=International+Conference+on+System+Theory%2C+Control+and+Computing&rft.atitle=Enhancing+Effluent+Quality+Predictions+in+Wastewater+Treatment+with+LSTM+Neural+Network&rft.au=Voipan%2C+Daniel&rft.au=Vasiliev%2C+Iulian&rft.au=Diaconu%2C+Larisa&rft.au=Voipan%2C+Andreea-Elena&rft.date=2024-10-10&rft.pub=IEEE&rft.eissn=2473-5698&rft.spage=83&rft.epage=88&rft_id=info:doi/10.1109%2FICSTCC62912.2024.10744668&rft.externalDocID=10744668