Microwave-based Breast Cancer Detection by using Auto Encoder-Decoder Probabilistic Neural Network

In this paper, our primary objective is to present an AI-based model designed for the detection of breast cancer through the analysis of microwave data. The data utilized in this study were collected by MammoWave scanner, with the magnitude of the \mathbf{S 2 1} complex number serving as the raw dat...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:International Symposium on Medical Information and Communication Technology (Online) s. 47 - 52
Hlavní autoři: Taghipour-Gorjikolaie, Mehran, Ghavami, Navid, Tiberi, Gianluigi, Badia, Mario, Papini, Lorenzo, Fracassini, Arianna, Bigotti, Alessandra, Palomba, Gianmarco, Ghavami, Mohammad
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 15.05.2024
Témata:
ISSN:2326-8301
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In this paper, our primary objective is to present an AI-based model designed for the detection of breast cancer through the analysis of microwave data. The data utilized in this study were collected by MammoWave scanner, with the magnitude of the \mathbf{S 2 1} complex number serving as the raw data input. We employed an Auto Encoder-Decoder for feature extraction, followed by the utilization of a Probabilistic Neural Network for the detection of malignant lesions. The results obtained indicate that although there is an imbalance in the distribution between healthy and non-healthy classes, our proposed method demonstrates the ability to address this challenge effectively through fine-tuning. Our approach achieves an approximate 60 \% rate for accuracy, sensitivity, and specificity, showcasing its promising potential in breast cancer detection.
AbstractList In this paper, our primary objective is to present an AI-based model designed for the detection of breast cancer through the analysis of microwave data. The data utilized in this study were collected by MammoWave scanner, with the magnitude of the \mathbf{S 2 1} complex number serving as the raw data input. We employed an Auto Encoder-Decoder for feature extraction, followed by the utilization of a Probabilistic Neural Network for the detection of malignant lesions. The results obtained indicate that although there is an imbalance in the distribution between healthy and non-healthy classes, our proposed method demonstrates the ability to address this challenge effectively through fine-tuning. Our approach achieves an approximate 60 \% rate for accuracy, sensitivity, and specificity, showcasing its promising potential in breast cancer detection.
Author Ghavami, Navid
Tiberi, Gianluigi
Badia, Mario
Fracassini, Arianna
Papini, Lorenzo
Palomba, Gianmarco
Bigotti, Alessandra
Ghavami, Mohammad
Taghipour-Gorjikolaie, Mehran
Author_xml – sequence: 1
  givenname: Mehran
  surname: Taghipour-Gorjikolaie
  fullname: Taghipour-Gorjikolaie, Mehran
  email: mehran.taghipour-gorjikolaie@lsbu.ac.uk
  organization: London South Bank University,School of Engineering,London,UK
– sequence: 2
  givenname: Navid
  surname: Ghavami
  fullname: Ghavami, Navid
  organization: UBT - Umbria Bioengineering Technologies,Perugia,Italy
– sequence: 3
  givenname: Gianluigi
  surname: Tiberi
  fullname: Tiberi, Gianluigi
  organization: London South Bank University,School of Engineering,London,UK
– sequence: 4
  givenname: Mario
  surname: Badia
  fullname: Badia, Mario
  organization: UBT - Umbria Bioengineering Technologies,Perugia,Italy
– sequence: 5
  givenname: Lorenzo
  surname: Papini
  fullname: Papini, Lorenzo
  organization: UBT - Umbria Bioengineering Technologies,Perugia,Italy
– sequence: 6
  givenname: Arianna
  surname: Fracassini
  fullname: Fracassini, Arianna
  organization: UBT - Umbria Bioengineering Technologies,Perugia,Italy
– sequence: 7
  givenname: Alessandra
  surname: Bigotti
  fullname: Bigotti, Alessandra
  organization: UBT - Umbria Bioengineering Technologies,Perugia,Italy
– sequence: 8
  givenname: Gianmarco
  surname: Palomba
  fullname: Palomba, Gianmarco
  organization: UBT - Umbria Bioengineering Technologies,Perugia,Italy
– sequence: 9
  givenname: Mohammad
  surname: Ghavami
  fullname: Ghavami, Mohammad
  organization: London South Bank University,School of Engineering,London,UK
BookMark eNo10MtOAjEUgOFqNBGRN3BRH2DwtJ3pZYkDKgmoibgmbeeMqeKMaQuEt9d4WX27f_Gfk5Ou75CQKwZjxsBcz5-X83olmTFyzIGXYwZKaODiiIyMMlpUICrBNRyTARdcFloAOyOjlN4AQHDGFOMD4pbBx35vd1g4m7ChNxFtyrS2ncdIp5jR59B31B3oNoXulU62uaezzvcNxmKKP9Kn2DvrwiakHDx9wG20m2_yvo_vF-S0tZuEoz-H5OV2tqrvi8Xj3byeLIrAlMwFd6rSFagGfOulBWssl85UWqAxWNlS-RKtBGmVakXDmqplkjfe8FK2unRiSC5_uwER158xfNh4WP9vEV9w2Fov
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ISMICT61996.2024.10738023
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISBN 9798350353280
EISSN 2326-8301
EndPage 52
ExternalDocumentID 10738023
Genre orig-research
GroupedDBID 6IE
6IL
6IN
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
OCL
RIE
RIL
ID FETCH-LOGICAL-i176t-2b758507d0cfc6a0a9a26b9583e99e5a47c4ea606a77f3d1d5f162dc9246f84b3
IEDL.DBID RIE
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001414921500010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 03:07:19 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i176t-2b758507d0cfc6a0a9a26b9583e99e5a47c4ea606a77f3d1d5f162dc9246f84b3
PageCount 6
ParticipantIDs ieee_primary_10738023
PublicationCentury 2000
PublicationDate 2024-May-15
PublicationDateYYYYMMDD 2024-05-15
PublicationDate_xml – month: 05
  year: 2024
  text: 2024-May-15
  day: 15
PublicationDecade 2020
PublicationTitle International Symposium on Medical Information and Communication Technology (Online)
PublicationTitleAbbrev ISMICT
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0003211712
Score 1.8774617
Snippet In this paper, our primary objective is to present an AI-based model designed for the detection of breast cancer through the analysis of microwave data. The...
SourceID ieee
SourceType Publisher
StartPage 47
SubjectTerms Accuracy
Artificial Intelligence
Auto Encoder-Decoder
Biological neural networks
Breast cancer
Encoding
Feature extraction
Microwave devices
Microwave theory and techniques
Performance evaluation
Probabilistic logic
Probabilistic Neural Network
Sensitivity and specificity
Title Microwave-based Breast Cancer Detection by using Auto Encoder-Decoder Probabilistic Neural Network
URI https://ieeexplore.ieee.org/document/10738023
WOSCitedRecordID wos001414921500010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA62SPHkq-KbCF63NslusnvUPtBDS8EKvZU8ZqUgW6nbiv_eTLqtePDgKctC2GyGMPlmvvmGkNtUe7saf9IcF-ABimFRyq2MgGl0t1K42IVmE2o4TCeTbFQVq4daGAAI5DNo4WPI5bu5XWKozJ9wJVCwrEZqSsl1sdY2oCI8lFGMN8hNpaN59_Ts_2QskWfrgSCPW5v5vzqpBEfS3__nEg5I86ckj462zuaQ7EBxRBqDKjN-TMwAmXWfegUROiZHH5BtXtIOWnVBu1AGzlVBzRdFrvsrvV-Wc9orsKZ9EXUhjPgJEzR3Ub6ZonKHfvNDoIo3yUu_N-48RlX_hGjGlCwjbhAMtJVr29xK3daZ5tJkSSogyyDRsbIxaI9gtFK5cMwlOZPcWQ_JZJ7GRpyQejEv4JRQhx5OWM2YsLEHhRg6SgHvTkJmhtsz0sS9mr6vJTKmm206_-P9BdlDi2AaniWXpF4ulnBFdu2qnH0sroNhvwG5p6LG
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5aRT35qvg2gtetTbKb7B61D1psS8EKvZW8VgqylXVb8d-bSbcVDx48ZdlDNpshTL6Zb75B6C6Wzq7KnTRDmXUARZEgppoHlkhwt5yZ0PhmE2IwiMfjZFgWq_taGGutJ5_ZGjz6XL6Z6TmEytwJFwwEyzbRVhSGtL4s11qHVJgDM4LQHXRbKmned5_dv4w4MG0dFKRhbTXDr14q3pW09_-5iANU_SnKw8O1uzlEGzY7Qjv9Mjd-jFQfuHWfcmEDcE0GPwLfvMANsGuOm7bwrKsMqy8MbPdX_DAvZriVQVV7HjStH-ETyqvugoAzBu0O-eYGTxavopd2a9ToBGUHhWBKBC8CqgAO1IWp61RzWZeJpFwlUcxskthIhkKHVjoMI4VImSEmSgmnRjtQxtM4VOwEVbJZZk8RNuDjmJaEMB06WAjBo9jC7YnxRFF9hqqwV5P3pUjGZLVN53-8v0G7nVG_N-l1B08XaA-sA0l5El2iSpHP7RXa1oti-pFfeyN_A2Cppg0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=International+Symposium+on+Medical+Information+and+Communication+Technology+%28Online%29&rft.atitle=Microwave-based+Breast+Cancer+Detection+by+using+Auto+Encoder-Decoder+Probabilistic+Neural+Network&rft.au=Taghipour-Gorjikolaie%2C+Mehran&rft.au=Ghavami%2C+Navid&rft.au=Tiberi%2C+Gianluigi&rft.au=Badia%2C+Mario&rft.date=2024-05-15&rft.pub=IEEE&rft.eissn=2326-8301&rft.spage=47&rft.epage=52&rft_id=info:doi/10.1109%2FISMICT61996.2024.10738023&rft.externalDocID=10738023