Dual-Sourcing via Dynamic Programming with Monte Carlo Value Approximation
In large scale global supply chains, the inventory cost sensitivity due to supplier disruption can be high. Dual-sourcing, a inventory policy which leverages two suppliers to minimize the cost of supplier disruption, is often applied to minimize the inventory cost in the face of uncertain lead times...
Gespeichert in:
| Veröffentlicht in: | International Conference on System Theory, Control and Computing S. 315 - 322 |
|---|---|
| 1. Verfasser: | |
| Format: | Tagungsbericht |
| Sprache: | Englisch |
| Veröffentlicht: |
IEEE
10.10.2024
|
| Schlagworte: | |
| ISSN: | 2473-5698 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | In large scale global supply chains, the inventory cost sensitivity due to supplier disruption can be high. Dual-sourcing, a inventory policy which leverages two suppliers to minimize the cost of supplier disruption, is often applied to minimize the inventory cost in the face of uncertain lead times and consumer demand. However, computing optimal policies for dual-sourcing faces challenges in modern supply chains due to the large scale of the system. We introduce Dyanmic Programming with Monte Carlo Value Approximation (DPMC), an approximate dynamic programming algorithm with polynomial time complexity which applies Monte Carlo simulation to estimate the optimal value function to address the large scale dual-sourcing problem. We show that DPMC is theoretically guaranteed to converge to the optimal policy by improving the value function approximator and/or increasing the number of Monte Carlo iterations. Via empirical simulation, we demonstrate that DPMC is competitive and often exceeds the cost-minimizing performance of other state-of-the-art dual-sourcing policies, specifically in scenarios where suppliers subject to disruption and/or fixed ordering costs. |
|---|---|
| AbstractList | In large scale global supply chains, the inventory cost sensitivity due to supplier disruption can be high. Dual-sourcing, a inventory policy which leverages two suppliers to minimize the cost of supplier disruption, is often applied to minimize the inventory cost in the face of uncertain lead times and consumer demand. However, computing optimal policies for dual-sourcing faces challenges in modern supply chains due to the large scale of the system. We introduce Dyanmic Programming with Monte Carlo Value Approximation (DPMC), an approximate dynamic programming algorithm with polynomial time complexity which applies Monte Carlo simulation to estimate the optimal value function to address the large scale dual-sourcing problem. We show that DPMC is theoretically guaranteed to converge to the optimal policy by improving the value function approximator and/or increasing the number of Monte Carlo iterations. Via empirical simulation, we demonstrate that DPMC is competitive and often exceeds the cost-minimizing performance of other state-of-the-art dual-sourcing policies, specifically in scenarios where suppliers subject to disruption and/or fixed ordering costs. |
| Author | Liu, Larkin |
| Author_xml | – sequence: 1 givenname: Larkin surname: Liu fullname: Liu, Larkin email: larkin.liu@tum.de organization: Technical University of Munich |
| BookMark | eNo1j0FOwzAURA0CiVJyAxbmACm2v2PHyyqlUFQEUgvbyiTfxSiJIzcFenuCgNmMNIuZN-fkpA0tEnLF2YRzZq4XxWpdFEoYLiaCCTnhTEuplT4iidEmh4yBksLAMRkJqSHNlMnPSLLbvTPGgOtB-Yjcz_a2TldhH0vfbumHt3R2aG3jS_oUwzbapvnJP33_Rh9C2yMtbKwDfbH1Hum062L48o3tfWgvyKmz9Q6TPx-T5_nNurhLl4-3i2K6TD3Xqk95lTtjZTWgATpd5UyCHJAcy16x1CgYgEJAnZXCKWSclU4iqLwCjsZlMCaXv70eETddHObjYfN_H74BRZhRZQ |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/ICSTCC62912.2024.10744767 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE/IET Electronic Library IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISBN | 9798350364293 |
| EISSN | 2473-5698 |
| EndPage | 322 |
| ExternalDocumentID | 10744767 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IF 6IK 6IL 6IN AAJGR ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IPLJI OCL RIE RIL |
| ID | FETCH-LOGICAL-i176t-1d8f9a4d2933ef7d80434000f05bec7e20336e3e75c2f6e010cf4e368d31e9f53 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001440908400052&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Aug 27 03:05:29 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i176t-1d8f9a4d2933ef7d80434000f05bec7e20336e3e75c2f6e010cf4e368d31e9f53 |
| PageCount | 8 |
| ParticipantIDs | ieee_primary_10744767 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-Oct.-10 |
| PublicationDateYYYYMMDD | 2024-10-10 |
| PublicationDate_xml | – month: 10 year: 2024 text: 2024-Oct.-10 day: 10 |
| PublicationDecade | 2020 |
| PublicationTitle | International Conference on System Theory, Control and Computing |
| PublicationTitleAbbrev | ICSTCC |
| PublicationYear | 2024 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0003177778 |
| Score | 1.8856568 |
| Snippet | In large scale global supply chains, the inventory cost sensitivity due to supplier disruption can be high. Dual-sourcing, a inventory policy which leverages... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 315 |
| SubjectTerms | Approximation algorithms Costs Dynamic programming Faces Heuristic algorithms Monte Carlo methods Monte Carlo Simulation Polynomials Production Science Sensitivity Supply chains Time complexity |
| Title | Dual-Sourcing via Dynamic Programming with Monte Carlo Value Approximation |
| URI | https://ieeexplore.ieee.org/document/10744767 |
| WOSCitedRecordID | wos001440908400052&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA5uiPg0LxPvRPA1W9u0SfsonUNFx2Bz7G1kyQkUdpG5Dn--OW038cEH8xRCQkIO6UlOz_d9hNwbf4q3bs0CozVDD8WUmVomBHKZyxhEoRIxepW9XjweJ_0KrF5gYQCgSD6DFlaLf_lmqXMMlbUxeTCUQtZITUpZgrV2ARU3jSvxAbmreDTbz-lgmKYiSHxEXAVhazv-l5JK4Ui6jX8u4Yg0fyB5tL9zNsdkDxYnpLHVZKDVET0lL51czdgAQ_KuH91kinZK0XkcjqlYc2zH8Ct9Q2YqmqrVbElHapYDfUCG8a-shDM2yXv3cZg-sUovgWW-FGvmm9gmKjTOg3Ow0sReyN0R9awXOUtJCDzOBXCQkQ6sAPcS0zYELmLDfUhsxM9IfbFcwDmhYRLrUHNjlOsibDDl1vieinQkpSc0vyBN3JvJR0mJMdluy-Uf7VfkEC2AH33fuyb19SqHG7KvN-vsc3VbGPIbyZqekQ |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1dT8IwFG0UjfqEHxi_rYmvhXXt2u3RDAkoEBKQ8EZKP5IlCAYZ8ee7uwHGBx_c09K0W9Ob5my395yD0KOhE_jq1sQ3WhNAKKLMxBEhQMtchlbkLhHDtux2w9Eo6q3J6jkXxlqbF5_ZKtzmZ_lmrlNIldWgeJBLIXfRXsC5Twu61jalkr0ou8ID9LBW0qy14v4gjoUfUeBc-by6ecIvL5UcShrlf07iGFV-SHm4t4WbE7RjZ6eovHFlwOtNeoZe6qmakj4k5bN-eJUoXC9s52E4FGO9QzskYHEHtKlwrBbTOR6qaWrxE2iMfyUFobGC3hrPg7hJ1o4JJKFSLAk1oYsUNxmGM-ukCT3Osk3qOS_IYiWt7zEmLLMy0L4TNvsX045bJkLDqI1cwM5RaTaf2QuEeRRqrpkxKusinD9hzlBPBTqQ0hOaXaIKrM34oxDFGG-W5eqP9nt02Bx02uN2q_t6jY4gGgAB1LtBpeUitbdoX6-WyefiLg_qNzlsodg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=International+Conference+on+System+Theory%2C+Control+and+Computing&rft.atitle=Dual-Sourcing+via+Dynamic+Programming+with+Monte+Carlo+Value+Approximation&rft.au=Liu%2C+Larkin&rft.date=2024-10-10&rft.pub=IEEE&rft.eissn=2473-5698&rft.spage=315&rft.epage=322&rft_id=info:doi/10.1109%2FICSTCC62912.2024.10744767&rft.externalDocID=10744767 |