Fault diagnosis of aircraft engines based on multi-sensor fusion sparse denoising autoencoder

As the heart of an aircraft, it is crucial to accurately grasp the operational status of aeroengines. However, it is difficult to fully reflect the accurate fault status through a single sensor signal, and the diagnostic effect of using input signals in complex environments is not satisfactory. Ther...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Chinese Control Conference s. 4835 - 4840
Hlavní autori: He, ShiJie, Wang, Zhi-Ming, Liu, Kun-Zhi, Sun, Xi-Ming
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: Technical Committee on Control Theory, Chinese Association of Automation 28.07.2024
Predmet:
ISSN:1934-1768
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract As the heart of an aircraft, it is crucial to accurately grasp the operational status of aeroengines. However, it is difficult to fully reflect the accurate fault status through a single sensor signal, and the diagnostic effect of using input signals in complex environments is not satisfactory. Therefore, this article proposes an aeroengine fault diagnosis method based on multisensor fusion and sparse denoising autoencoder, which comprehensively considers multi-sensor decision-making and reduces the difficulty of extracting high-dimensional data features, reducing the interference caused by noise. Experiments have shown that this method can effectively identify the fault status of aircraft engines, and compared to existing methods, this method can provide more accurate diagnostic results.
AbstractList As the heart of an aircraft, it is crucial to accurately grasp the operational status of aeroengines. However, it is difficult to fully reflect the accurate fault status through a single sensor signal, and the diagnostic effect of using input signals in complex environments is not satisfactory. Therefore, this article proposes an aeroengine fault diagnosis method based on multisensor fusion and sparse denoising autoencoder, which comprehensively considers multi-sensor decision-making and reduces the difficulty of extracting high-dimensional data features, reducing the interference caused by noise. Experiments have shown that this method can effectively identify the fault status of aircraft engines, and compared to existing methods, this method can provide more accurate diagnostic results.
Author Liu, Kun-Zhi
Sun, Xi-Ming
He, ShiJie
Wang, Zhi-Ming
Author_xml – sequence: 1
  givenname: ShiJie
  surname: He
  fullname: He, ShiJie
  email: hesj@mail.dlut.edu.cn
  organization: Dalian University of Technology,School of Control Science and Control Engineering,Dalian,China,116024
– sequence: 2
  givenname: Zhi-Ming
  surname: Wang
  fullname: Wang, Zhi-Ming
  email: wangzhimin_1994@mail.dlut.edu.cn
  organization: Dalian University of Technology,School of Control Science and Control Engineering,Dalian,China,116024
– sequence: 3
  givenname: Kun-Zhi
  surname: Liu
  fullname: Liu, Kun-Zhi
  email: kzliu1989@dlut.edu.cn
  organization: Dalian University of Technology,School of Control Science and Control Engineering,Dalian,China,116024
– sequence: 4
  givenname: Xi-Ming
  surname: Sun
  fullname: Sun, Xi-Ming
  email: sunxm@dlut.edu.cn
  organization: Dalian University of Technology,School of Control Science and Control Engineering,Dalian,China,116024
BookMark eNo1kM1KAzEUhaMo2FbfQDAvMDWZJJNkKYN_UHCjSyl3Jjcl0iYld7rw7R1QVwcOHx-Hs2QXuWRk7E6Kdau89Pd933dK2m7dilavpei6trX6jC29c9Y4aZw5ZwvplW5myl2xJdGXEJ3wUi3Y5xOc9hMPCXa5UCJeIodUxwpx4ph3KSPxAQgDL5kfZjY1hJlK5fFEae7oCJWQB8wlUco7DqepYB5LwHrNLiPsCW_-csU-nh7f-5dm8_b82j9smjRPmhrpxiiiU2jl0KEMJoxSG7DeWfADOBAigNQ-4GgUDhasMEE7ZVobI45ardjtrzch4vZY0wHq9_b_C_UD-5BYDA
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.23919/CCC63176.2024.10662274
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9887581585
9789887581581
EISSN 1934-1768
EndPage 4840
ExternalDocumentID 10662274
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 10.13039/501100001809
GroupedDBID 29B
6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ABLEC
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
M43
OCL
RIE
RIL
ID FETCH-LOGICAL-i176t-18cf0f83e71b6e1d5dc145a7987a9ba8a00da149dec53eb7a705d483527ffec43
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001324993504162&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:00:25 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i176t-18cf0f83e71b6e1d5dc145a7987a9ba8a00da149dec53eb7a705d483527ffec43
PageCount 6
ParticipantIDs ieee_primary_10662274
PublicationCentury 2000
PublicationDate 2024-July-28
PublicationDateYYYYMMDD 2024-07-28
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-July-28
  day: 28
PublicationDecade 2020
PublicationTitle Chinese Control Conference
PublicationTitleAbbrev CCC
PublicationYear 2024
Publisher Technical Committee on Control Theory, Chinese Association of Automation
Publisher_xml – name: Technical Committee on Control Theory, Chinese Association of Automation
SSID ssj0060913
Score 2.2632334
Snippet As the heart of an aircraft, it is crucial to accurately grasp the operational status of aeroengines. However, it is difficult to fully reflect the accurate...
SourceID ieee
SourceType Publisher
StartPage 4835
SubjectTerms Accuracy
aeroengine
Atmospheric modeling
Fault diagnosis
Feature extraction
multi-sensor information fusion
Noise
Noise reduction
sparse denoising autoencoder
Training
Title Fault diagnosis of aircraft engines based on multi-sensor fusion sparse denoising autoencoder
URI https://ieeexplore.ieee.org/document/10662274
WOSCitedRecordID wos001324993504162&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwMhECa28aAXXzW-w8Hr1oXCAueNjQfT9KCmF9OwMCSbmF2zD3-_wLY-Dh68EQIhMJkn38wgdEsMcSSjkHAnXcIYo4nnIpcQm2pNuXM6gjFfHsViIVcrtdwkq8dcGACI4DOYhmH8y7e16UOozHN4llHvRo3QSAgxJGttxW4WClwOAC46U0Td5XmeeeUYYAiUTbdbfzVRiTpkfvDP0w_R5DsbDy-_9MwR2oHqGO3_KCR4gl7nun_rsB1wc2WLa4d12ZhGuw5DXNnioLAsriscQYRJ6x3YusGuD_Ey7AVL0wL2UqguQ_gA676rQ5FLC80EPc_vn_KHZNM4ISn9hbuESONSJ2cgSJEBsdwawrgWSgqtCi11mlrtXSMLhs-gEFqk3LJgi4kAImGzUzSu6grOEHZKF4qB51LuLScAqYrCcJpZphWXFM7RJLzU-n2ojbHePtLFH_OXaC_QI0RHqbxC467p4Rrtmo-ubJubSNFPZlukdA
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV05T8MwFLagIAELVxE3HlhdYsdO7LmiKqJUHQrqgionfpYioQTl4PdjJy3HwMBmWT5kW-_0995D6Jam1NKIARFWWsI5Z8RRkSXUBFozYa1uwZgvk3g6lYuFmq2C1dtYGABowWcw8M32L98UaeNdZY7Co4g5M2oTbQm3Ku3CtdaMN_IpLjsIFwsVVXfD4TBy4tEDERgfrCf_KqPSSpHR_j_3P0D973g8PPuSNIdoA_IjtPcjleAxeh3p5q3GpkPOZRUuLNZZmZba1hjakRX2IsvgIsctjJBUzoQtSmwb7zHDjrWUFWDHh4rMOxCwburCp7k0UPbR8-h-PhyTVekEkrkD14TK1AZWhhDTJAJqhEkpFzpWMtYq0VIHgdHOODKQihCSWMeBMNxrY7GHkfDwBPXyIodThK3SieLg6FQ43QlAqiRJBYsM10pIBmeo729q-d5lx1iuL-n8j_4btDOeP02Wk4fp4wXa9W_jfaVMXqJeXTZwhbbTjzqryuv2dT8BIKynuw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Chinese+Control+Conference&rft.atitle=Fault+diagnosis+of+aircraft+engines+based+on+multi-sensor+fusion+sparse+denoising+autoencoder&rft.au=He%2C+ShiJie&rft.au=Wang%2C+Zhi-Ming&rft.au=Liu%2C+Kun-Zhi&rft.au=Sun%2C+Xi-Ming&rft.date=2024-07-28&rft.pub=Technical+Committee+on+Control+Theory%2C+Chinese+Association+of+Automation&rft.eissn=1934-1768&rft.spage=4835&rft.epage=4840&rft_id=info:doi/10.23919%2FCCC63176.2024.10662274&rft.externalDocID=10662274