Aircraft Detection by Deep Belief Nets

Aircraft detection is a difficult task in high-resolution remote sensing images, due to the variable sizes, colors, orientations and complex backgrounds. In this paper, an effective aircraft detection method is proposed which exactly locates the object by outputting its geometric center, orientation...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Proceedings - IEEE Computer Society Conference on Pattern Recognition and Image Processing s. 54 - 58
Hlavní autoři: Xueyun Chen, Shiming Xiang, Cheng-Lin Liu, Chun-Hong Pan
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.11.2013
Témata:
ISSN:0730-6512
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Aircraft detection is a difficult task in high-resolution remote sensing images, due to the variable sizes, colors, orientations and complex backgrounds. In this paper, an effective aircraft detection method is proposed which exactly locates the object by outputting its geometric center, orientation, position. To reduce the influence of background, multi-images including gradient image and gray thresholding images of the object were input to a Deep Belief Net (DBN), which was pre-trained first to learn features and later fine-tuned by back-propagation to yield a robust detector. Experimental results show that DBNs can detecte the tiny blurred aircrafts correctly in many difficult airport images, DBNs outperform the traditional Feature Classifier methods in robustness and accuracy, and the multi-images help improve the detection precision of DBN than using only single-image.
AbstractList Aircraft detection is a difficult task in high-resolution remote sensing images, due to the variable sizes, colors, orientations and complex backgrounds. In this paper, an effective aircraft detection method is proposed which exactly locates the object by outputting its geometric center, orientation, position. To reduce the influence of background, multi-images including gradient image and gray thresholding images of the object were input to a Deep Belief Net (DBN), which was pre-trained first to learn features and later fine-tuned by back-propagation to yield a robust detector. Experimental results show that DBNs can detecte the tiny blurred aircrafts correctly in many difficult airport images, DBNs outperform the traditional Feature Classifier methods in robustness and accuracy, and the multi-images help improve the detection precision of DBN than using only single-image.
Author Xueyun Chen
Shiming Xiang
Cheng-Lin Liu
Chun-Hong Pan
Author_xml – sequence: 1
  surname: Xueyun Chen
  fullname: Xueyun Chen
  email: xueyun.chen@nlpr.ia.ac.cn
  organization: Nat. Lab. of Pattern Recognition, Inst. of Autom., Beijing, China
– sequence: 2
  surname: Shiming Xiang
  fullname: Shiming Xiang
  email: smxiang@nlpr.ia.ac.cn
  organization: Nat. Lab. of Pattern Recognition, Inst. of Autom., Beijing, China
– sequence: 3
  surname: Cheng-Lin Liu
  fullname: Cheng-Lin Liu
  email: liucl@nlpr.ia.ac.cn
  organization: Nat. Lab. of Pattern Recognition, Inst. of Autom., Beijing, China
– sequence: 4
  surname: Chun-Hong Pan
  fullname: Chun-Hong Pan
  email: chpang@nlpr.ia.ac.cn
  organization: Nat. Lab. of Pattern Recognition, Inst. of Autom., Beijing, China
BookMark eNotjLtOw0AQRRcpSCQhFSWNKzqbmX1PacxTigAhqKO1PSstCk5kb5O_xxJU95zi3JVYDIeBhbhCqBCBbuvm_aOSgKoyZ2KF2hFJJNALsQSnoLQG5YXYTNM3ACj0ngiX4qZOYzeGmIt7ztzldBiK9jQLH4s73ieOxSvn6VKcx7CfePO_a_H1-PDZPJfbt6eXpt6WCZ3JZYyGOkMqqpkisgfbddCz1a0FTTo4Y50jqYJlVuSkD2yhpdbGnlxv1Vpc__0mZt4dx_QTxtNubrz0qH4BjEw_qg
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ACPR.2013.5
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISBN 1479921904
9781479921904
EndPage 58
ExternalDocumentID 6778281
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
OCL
RIE
RIL
ID FETCH-LOGICAL-i175t-ff59c593f3ff5f1e806cc0de64b60494a75677923a6ee39728ae60b9b6fd97d63
IEDL.DBID RIE
ISICitedReferencesCount 44
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000339501000012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0730-6512
IngestDate Wed Aug 27 04:26:29 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-ff59c593f3ff5f1e806cc0de64b60494a75677923a6ee39728ae60b9b6fd97d63
PageCount 5
ParticipantIDs ieee_primary_6778281
PublicationCentury 2000
PublicationDate 2013-Nov.
PublicationDateYYYYMMDD 2013-11-01
PublicationDate_xml – month: 11
  year: 2013
  text: 2013-Nov.
PublicationDecade 2010
PublicationTitle Proceedings - IEEE Computer Society Conference on Pattern Recognition and Image Processing
PublicationTitleAbbrev acpr
PublicationYear 2013
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0003188991
Score 1.709328
Snippet Aircraft detection is a difficult task in high-resolution remote sensing images, due to the variable sizes, colors, orientations and complex backgrounds. In...
SourceID ieee
SourceType Publisher
StartPage 54
SubjectTerms Aircraft
Airports
Deep convolutional Neural Networks
Feature extraction
Image segmentation
Object detection
Remote Sensing
Robustness
Satellites
Training
Title Aircraft Detection by Deep Belief Nets
URI https://ieeexplore.ieee.org/document/6778281
WOSCitedRecordID wos000339501000012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA61ePBUtRXf5CCeTLuvZJNjrRYPUooo9FbymEAv27LdCv57J9ttRfDiLRnYzTKZ4ZtN5psh5M5IH6tcA5Mm1ixzTqHPcc-E4MZlBgNsX1fXf80nEzmbqWmLPOy5MABQJ59BPwzru3y3tJtwVDYIxc6SwLM-yHOx5Wrtz1PQNvHXoW6Qh0bLBAJZQ8eLIzUYjqZvIY8r7fNfbVRqFBl3_rf-Men90PHodA80J6QFxSnpNPEjbbxzjaJdi4adrEvuh4vSltpX9AmqOuuqoOYLJ7Cij4DPezqBat0jH-Pn99ELa1ojsAXifcW858pylfoURz4GGQlrIwciMyJUfNE5x4_F4E0LAAw5EqlBREYZ4Z3KnUjPSLtYFnBOqE20QoDiEb4qE4AOnWkltNdSGONkckG6QRPz1bb6xbxRwuXf4ityFNS8Zetdk3ZVbuCGHNrParEub-st-wY13JU4
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8NAEB1KFfRUtRW_zUE8mTafm-yxVkvFGopU6K3sZmchl7SkqeC_dzZNK4IXb7sDWZbJDm-ymTcP4E7G2uWRQDuWrrADpTjFXKhtxkKpAkkJtq6664-jJIlnMz5pwMOOC4OIVfEZds2w-pevFunaXJX1TLMzz_Cs94xyVs3W2t2o0Omkj4dKIo-Orc0IympCnuvwXn8weTeVXH43_CWkUuHIsPW_HRxB54eQZ012UHMMDcxPoFVnkFYdnysybUUatrY23PezIi2ELq0nLKu6q9ySXzTBpfWI9Ly2EixXHfgYPk8HI7sWR7AzQvzS1jrkach97dNIuxg7LE0dhSyQzPR8EVFIm6X0TTBESjq8WCBzJJdMKx4p5p9CM1_keAZW6glOEBU6tFTAkEI6EJwJLWImpYq9c2gbT8yXm_4X89oJF3-bb-FgNH0bz8cvyeslHBqXb7h7V9AsizVew376WWar4qZ6fd8xqJiB
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Proceedings+-+IEEE+Computer+Society+Conference+on+Pattern+Recognition+and+Image+Processing&rft.atitle=Aircraft+Detection+by+Deep+Belief+Nets&rft.au=Xueyun+Chen&rft.au=Shiming+Xiang&rft.au=Cheng-Lin+Liu&rft.au=Chun-Hong+Pan&rft.date=2013-11-01&rft.pub=IEEE&rft.issn=0730-6512&rft.spage=54&rft.epage=58&rft_id=info:doi/10.1109%2FACPR.2013.5&rft.externalDocID=6778281
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0730-6512&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0730-6512&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0730-6512&client=summon