Aircraft Detection by Deep Belief Nets
Aircraft detection is a difficult task in high-resolution remote sensing images, due to the variable sizes, colors, orientations and complex backgrounds. In this paper, an effective aircraft detection method is proposed which exactly locates the object by outputting its geometric center, orientation...
Uloženo v:
| Vydáno v: | Proceedings - IEEE Computer Society Conference on Pattern Recognition and Image Processing s. 54 - 58 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
01.11.2013
|
| Témata: | |
| ISSN: | 0730-6512 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Aircraft detection is a difficult task in high-resolution remote sensing images, due to the variable sizes, colors, orientations and complex backgrounds. In this paper, an effective aircraft detection method is proposed which exactly locates the object by outputting its geometric center, orientation, position. To reduce the influence of background, multi-images including gradient image and gray thresholding images of the object were input to a Deep Belief Net (DBN), which was pre-trained first to learn features and later fine-tuned by back-propagation to yield a robust detector. Experimental results show that DBNs can detecte the tiny blurred aircrafts correctly in many difficult airport images, DBNs outperform the traditional Feature Classifier methods in robustness and accuracy, and the multi-images help improve the detection precision of DBN than using only single-image. |
|---|---|
| AbstractList | Aircraft detection is a difficult task in high-resolution remote sensing images, due to the variable sizes, colors, orientations and complex backgrounds. In this paper, an effective aircraft detection method is proposed which exactly locates the object by outputting its geometric center, orientation, position. To reduce the influence of background, multi-images including gradient image and gray thresholding images of the object were input to a Deep Belief Net (DBN), which was pre-trained first to learn features and later fine-tuned by back-propagation to yield a robust detector. Experimental results show that DBNs can detecte the tiny blurred aircrafts correctly in many difficult airport images, DBNs outperform the traditional Feature Classifier methods in robustness and accuracy, and the multi-images help improve the detection precision of DBN than using only single-image. |
| Author | Xueyun Chen Shiming Xiang Cheng-Lin Liu Chun-Hong Pan |
| Author_xml | – sequence: 1 surname: Xueyun Chen fullname: Xueyun Chen email: xueyun.chen@nlpr.ia.ac.cn organization: Nat. Lab. of Pattern Recognition, Inst. of Autom., Beijing, China – sequence: 2 surname: Shiming Xiang fullname: Shiming Xiang email: smxiang@nlpr.ia.ac.cn organization: Nat. Lab. of Pattern Recognition, Inst. of Autom., Beijing, China – sequence: 3 surname: Cheng-Lin Liu fullname: Cheng-Lin Liu email: liucl@nlpr.ia.ac.cn organization: Nat. Lab. of Pattern Recognition, Inst. of Autom., Beijing, China – sequence: 4 surname: Chun-Hong Pan fullname: Chun-Hong Pan email: chpang@nlpr.ia.ac.cn organization: Nat. Lab. of Pattern Recognition, Inst. of Autom., Beijing, China |
| BookMark | eNotjLtOw0AQRRcpSCQhFSWNKzqbmX1PacxTigAhqKO1PSstCk5kb5O_xxJU95zi3JVYDIeBhbhCqBCBbuvm_aOSgKoyZ2KF2hFJJNALsQSnoLQG5YXYTNM3ACj0ngiX4qZOYzeGmIt7ztzldBiK9jQLH4s73ieOxSvn6VKcx7CfePO_a_H1-PDZPJfbt6eXpt6WCZ3JZYyGOkMqqpkisgfbddCz1a0FTTo4Y50jqYJlVuSkD2yhpdbGnlxv1Vpc__0mZt4dx_QTxtNubrz0qH4BjEw_qg |
| CODEN | IEEPAD |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/ACPR.2013.5 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Computer Science |
| EISBN | 1479921904 9781479921904 |
| EndPage | 58 |
| ExternalDocumentID | 6778281 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IF 6IK 6IL 6IN AAJGR AAWTH ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IPLJI OCL RIE RIL |
| ID | FETCH-LOGICAL-i175t-ff59c593f3ff5f1e806cc0de64b60494a75677923a6ee39728ae60b9b6fd97d63 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 44 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000339501000012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0730-6512 |
| IngestDate | Wed Aug 27 04:26:29 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i175t-ff59c593f3ff5f1e806cc0de64b60494a75677923a6ee39728ae60b9b6fd97d63 |
| PageCount | 5 |
| ParticipantIDs | ieee_primary_6778281 |
| PublicationCentury | 2000 |
| PublicationDate | 2013-Nov. |
| PublicationDateYYYYMMDD | 2013-11-01 |
| PublicationDate_xml | – month: 11 year: 2013 text: 2013-Nov. |
| PublicationDecade | 2010 |
| PublicationTitle | Proceedings - IEEE Computer Society Conference on Pattern Recognition and Image Processing |
| PublicationTitleAbbrev | acpr |
| PublicationYear | 2013 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0003188991 |
| Score | 1.709328 |
| Snippet | Aircraft detection is a difficult task in high-resolution remote sensing images, due to the variable sizes, colors, orientations and complex backgrounds. In... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 54 |
| SubjectTerms | Aircraft Airports Deep convolutional Neural Networks Feature extraction Image segmentation Object detection Remote Sensing Robustness Satellites Training |
| Title | Aircraft Detection by Deep Belief Nets |
| URI | https://ieeexplore.ieee.org/document/6778281 |
| WOSCitedRecordID | wos000339501000012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA61ePBUtRXf5CCeTLuvZJNjrRYPUooo9FbymEAv27LdCv57J9ttRfDiLRnYzTKZ4ZtN5psh5M5IH6tcA5Mm1ixzTqHPcc-E4MZlBgNsX1fXf80nEzmbqWmLPOy5MABQJ59BPwzru3y3tJtwVDYIxc6SwLM-yHOx5Wrtz1PQNvHXoW6Qh0bLBAJZQ8eLIzUYjqZvIY8r7fNfbVRqFBl3_rf-Men90PHodA80J6QFxSnpNPEjbbxzjaJdi4adrEvuh4vSltpX9AmqOuuqoOYLJ7Cij4DPezqBat0jH-Pn99ELa1ojsAXifcW858pylfoURz4GGQlrIwciMyJUfNE5x4_F4E0LAAw5EqlBREYZ4Z3KnUjPSLtYFnBOqE20QoDiEb4qE4AOnWkltNdSGONkckG6QRPz1bb6xbxRwuXf4ityFNS8Zetdk3ZVbuCGHNrParEub-st-wY13JU4 |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8NAEB1KFfRUtRW_zUE8mTafm-yxVkvFGopU6K3sZmchl7SkqeC_dzZNK4IXb7sDWZbJDm-ymTcP4E7G2uWRQDuWrrADpTjFXKhtxkKpAkkJtq6664-jJIlnMz5pwMOOC4OIVfEZds2w-pevFunaXJX1TLMzz_Cs94xyVs3W2t2o0Omkj4dKIo-Orc0IympCnuvwXn8weTeVXH43_CWkUuHIsPW_HRxB54eQZ012UHMMDcxPoFVnkFYdnysybUUatrY23PezIi2ELq0nLKu6q9ySXzTBpfWI9Ly2EixXHfgYPk8HI7sWR7AzQvzS1jrkach97dNIuxg7LE0dhSyQzPR8EVFIm6X0TTBESjq8WCBzJJdMKx4p5p9CM1_keAZW6glOEBU6tFTAkEI6EJwJLWImpYq9c2gbT8yXm_4X89oJF3-bb-FgNH0bz8cvyeslHBqXb7h7V9AsizVew376WWar4qZ6fd8xqJiB |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Proceedings+-+IEEE+Computer+Society+Conference+on+Pattern+Recognition+and+Image+Processing&rft.atitle=Aircraft+Detection+by+Deep+Belief+Nets&rft.au=Xueyun+Chen&rft.au=Shiming+Xiang&rft.au=Cheng-Lin+Liu&rft.au=Chun-Hong+Pan&rft.date=2013-11-01&rft.pub=IEEE&rft.issn=0730-6512&rft.spage=54&rft.epage=58&rft_id=info:doi/10.1109%2FACPR.2013.5&rft.externalDocID=6778281 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0730-6512&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0730-6512&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0730-6512&client=summon |