A Population-Based Incremental Learning Method for Constrained Portfolio Optimisation

This paper investigates a hybrid algorithm which utilizes exact and heuristic methods to optimise asset selection and capital allocation in portfolio optimisation. The proposed method is composed of a customised population based incremental learning procedure and a mathematical programming applicati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2014 16th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing S. 212 - 219
Hauptverfasser: Yan Jin, Rong Qu, Atkin, Jason
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 01.09.2014
Schlagworte:
ISBN:9781479984473, 1479984477
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper investigates a hybrid algorithm which utilizes exact and heuristic methods to optimise asset selection and capital allocation in portfolio optimisation. The proposed method is composed of a customised population based incremental learning procedure and a mathematical programming application. It is based on the standard Markowitz model with additional practical constraints such as cardinality on the number of assets and quantity of the allocated capital. Computational experiments have been conducted and analysis has demonstrated the performance and effectiveness of the proposed approach.
ISBN:9781479984473
1479984477
DOI:10.1109/SYNASC.2014.36