A Population-Based Incremental Learning Method for Constrained Portfolio Optimisation
This paper investigates a hybrid algorithm which utilizes exact and heuristic methods to optimise asset selection and capital allocation in portfolio optimisation. The proposed method is composed of a customised population based incremental learning procedure and a mathematical programming applicati...
Uloženo v:
| Vydáno v: | 2014 16th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing s. 212 - 219 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
01.09.2014
|
| Témata: | |
| ISBN: | 9781479984473, 1479984477 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | This paper investigates a hybrid algorithm which utilizes exact and heuristic methods to optimise asset selection and capital allocation in portfolio optimisation. The proposed method is composed of a customised population based incremental learning procedure and a mathematical programming application. It is based on the standard Markowitz model with additional practical constraints such as cardinality on the number of assets and quantity of the allocated capital. Computational experiments have been conducted and analysis has demonstrated the performance and effectiveness of the proposed approach. |
|---|---|
| ISBN: | 9781479984473 1479984477 |
| DOI: | 10.1109/SYNASC.2014.36 |

