The computational complexity of problems to compute intervals wrappers for random variables uniform, Exponential and Pareto

When working with floating point numbers the result is only an approximation of a real value and errors generated by rounding or by instability of the algorithms can lead to incorrect results. We can't affirm the accuracy of the estimated answer without the contribution of an error analysis. In...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2012 XXXVIII Conferencia Latinoamericana en Informatica s. 1 - 9
Hlavní autoři: Finger, A. F., Loreto, A. B., Campos, M. A., Varjao, F. R. G., dos Santos, M. D.
Médium: Konferenční příspěvek
Jazyk:angličtina
portugalština
Vydáno: IEEE 01.10.2012
Témata:
ISBN:9781467307949, 1467307947
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:When working with floating point numbers the result is only an approximation of a real value and errors generated by rounding or by instability of the algorithms can lead to incorrect results. We can't affirm the accuracy of the estimated answer without the contribution of an error analysis. Interval techniques compute an interval range, with the assurance the answer belongs to this range. Using intervals for the representation of real numbers, it is possible to control the error propagation of rounding or truncation, between others, in numerical computational procedures. Therefore, intervals results carry with them the security of their quality. The goal is to analyze the computational complexity of the problems of computing enclosures intervals for random variables Uniform, Exponential and Pareto, showing that the intervals algorithms have linear complexity, which together with the security that interval mathematics provides, makes the use of intervals even more justified.
ISBN:9781467307949
1467307947
DOI:10.1109/CLEI.2012.6426920