An adaptive clustering and chrominance-based merging approach for image segmentation and abstraction

We present a novel, computationally efficient approach for natural image segmentation that uses the adaptive clustering algorithm (ACA) to obtain an initial segmentation and chrominance-based region merging to consolidate regions of perceptually uniform texture. The combination of ACA and chrominanc...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2010 IEEE International Conference on Image Processing s. 241 - 244
Hlavní autoři: He, Lulu, Pappas, Thrasyvoulos N.
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.09.2010
Témata:
ISBN:9781424479924, 1424479924
ISSN:1522-4880
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We present a novel, computationally efficient approach for natural image segmentation that uses the adaptive clustering algorithm (ACA) to obtain an initial segmentation and chrominance-based region merging to consolidate regions of perceptually uniform texture. The combination of ACA and chrominance-based merging preserves salient edges and smooths out noise and edges within textured regions. It can thus be used for image abstraction. Experimental results with natural images indicate the effectiveness of the proposed approach.
ISBN:9781424479924
1424479924
ISSN:1522-4880
DOI:10.1109/ICIP.2010.5651905