An adaptive clustering and chrominance-based merging approach for image segmentation and abstraction
We present a novel, computationally efficient approach for natural image segmentation that uses the adaptive clustering algorithm (ACA) to obtain an initial segmentation and chrominance-based region merging to consolidate regions of perceptually uniform texture. The combination of ACA and chrominanc...
Uloženo v:
| Vydáno v: | 2010 IEEE International Conference on Image Processing s. 241 - 244 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
01.09.2010
|
| Témata: | |
| ISBN: | 9781424479924, 1424479924 |
| ISSN: | 1522-4880 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We present a novel, computationally efficient approach for natural image segmentation that uses the adaptive clustering algorithm (ACA) to obtain an initial segmentation and chrominance-based region merging to consolidate regions of perceptually uniform texture. The combination of ACA and chrominance-based merging preserves salient edges and smooths out noise and edges within textured regions. It can thus be used for image abstraction. Experimental results with natural images indicate the effectiveness of the proposed approach. |
|---|---|
| ISBN: | 9781424479924 1424479924 |
| ISSN: | 1522-4880 |
| DOI: | 10.1109/ICIP.2010.5651905 |

