SUN database: Large-scale scene recognition from abbey to zoo

Scene categorization is a fundamental problem in computer vision. However, scene understanding research has been constrained by the limited scope of currently-used databases which do not capture the full variety of scene categories. Whereas standard databases for object categorization contain hundre...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition s. 3485 - 3492
Hlavní autori: Jianxiong Xiao, Hays, J, Ehinger, K A, Oliva, A, Torralba, A
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: IEEE 01.06.2010
Predmet:
ISBN:1424469848, 9781424469840
ISSN:1063-6919, 1063-6919
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Scene categorization is a fundamental problem in computer vision. However, scene understanding research has been constrained by the limited scope of currently-used databases which do not capture the full variety of scene categories. Whereas standard databases for object categorization contain hundreds of different classes of objects, the largest available dataset of scene categories contains only 15 classes. In this paper we propose the extensive Scene UNderstanding (SUN) database that contains 899 categories and 130,519 images. We use 397 well-sampled categories to evaluate numerous state-of-the-art algorithms for scene recognition and establish new bounds of performance. We measure human scene classification performance on the SUN database and compare this with computational methods. Additionally, we study a finer-grained scene representation to detect scenes embedded inside of larger scenes.
ISBN:1424469848
9781424469840
ISSN:1063-6919
1063-6919
DOI:10.1109/CVPR.2010.5539970