Proportionate-type NLMS algorithms based on maximization of the joint conditional PDF for the weight deviation vector

In this paper, we present a proportionate-type normalized least mean square algorithm which operates by choosing adaptive gains at each time step in a manner designed to maximize the joint conditional probability that the next-step coefficient estimates reach their optimal values. We compare and sho...

Full description

Saved in:
Bibliographic Details
Published in:2010 IEEE International Conference on Acoustics, Speech and Signal Processing pp. 3738 - 3741
Main Authors: Wagner, Kevin T, Doroslovački, Miloš I
Format: Conference Proceeding
Language:English
Published: IEEE 01.03.2010
Subjects:
ISBN:9781424442959, 1424442958
ISSN:1520-6149
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In this paper, we present a proportionate-type normalized least mean square algorithm which operates by choosing adaptive gains at each time step in a manner designed to maximize the joint conditional probability that the next-step coefficient estimates reach their optimal values. We compare and show that the performance of the joint maximum conditional probability density function (PDF) one-step algorithm is superior to the proportionate normalized least mean square algorithm when operating on a sparse impulse response. We also show that the new algorithm is superior to a previously introduced algorithm which assumed that the conditional PDF could be represented by the product of the marginal conditional PDFs, i.e., that the weight deviations are mutually conditionally independent.
AbstractList In this paper, we present a proportionate-type normalized least mean square algorithm which operates by choosing adaptive gains at each time step in a manner designed to maximize the joint conditional probability that the next-step coefficient estimates reach their optimal values. We compare and show that the performance of the joint maximum conditional probability density function (PDF) one-step algorithm is superior to the proportionate normalized least mean square algorithm when operating on a sparse impulse response. We also show that the new algorithm is superior to a previously introduced algorithm which assumed that the conditional PDF could be represented by the product of the marginal conditional PDFs, i.e., that the weight deviations are mutually conditionally independent.
Author Doroslovački, Miloš I
Wagner, Kevin T
Author_xml – sequence: 1
  givenname: Kevin T
  surname: Wagner
  fullname: Wagner, Kevin T
  organization: Radar Div., Naval Res. Lab., Washington, DC, USA
– sequence: 2
  givenname: Miloš I
  surname: Doroslovački
  fullname: Doroslovački, Miloš I
  organization: Dept. of Electr. & Comput. Eng., George Washington Univ., Washington, DC, USA
BookMark eNpVkEFPAjEQhWvEREB-AZf-gcW22-62R4OiJqgk6Jl02ymUsFvSrSj-ehG4eJrMvHlf8l4PdZrQAEJDSkaUEnX7PL6bz2cjRg4HwZWQJb1AA1VKyhnnnKmiuPy3C9VBXSoYyQrK1TXqte2aECJLLrvocxbDNsTkQ6MTZGm_Bfw6fZljvVmG6NOqbnGlW7A4NLjW3772P_rvGweH0wrwOvgmYRMa64-QDZ7dT7AL8ah-gV-uEraw8yfXDkwK8QZdOb1pYXCeffQxeXgfP2XTt8dDvmnmaSlS5lQhODOa5wTASUOFACqVIU7ZvDSMgGVUOlmpykoNRLtDHSQ3VlVFrqnK-2h44noAWGyjr3XcL86t5b8KCGMF
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/ICASSP.2010.5495871
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore Digital Library
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9781424442966
1424442966
EndPage 3741
ExternalDocumentID 5495871
Genre orig-research
GroupedDBID 23M
29P
6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ABLEC
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
IPLJI
M43
OCL
RIE
RIL
RIO
RNS
ID FETCH-LOGICAL-i175t-f96542ca430eef8c155e189c0f9d37c20ed218f8b9bd8ae0af95803cd9b63a193
IEDL.DBID RIE
ISBN 9781424442959
1424442958
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000287096003169&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1520-6149
IngestDate Wed Aug 27 02:43:11 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-f96542ca430eef8c155e189c0f9d37c20ed218f8b9bd8ae0af95803cd9b63a193
PageCount 4
ParticipantIDs ieee_primary_5495871
PublicationCentury 2000
PublicationDate 2010-March
PublicationDateYYYYMMDD 2010-03-01
PublicationDate_xml – month: 03
  year: 2010
  text: 2010-March
PublicationDecade 2010
PublicationTitle 2010 IEEE International Conference on Acoustics, Speech and Signal Processing
PublicationTitleAbbrev ICASSP
PublicationYear 2010
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0008748
ssj0000452700
Score 1.7464367
Snippet In this paper, we present a proportionate-type normalized least mean square algorithm which operates by choosing adaptive gains at each time step in a manner...
SourceID ieee
SourceType Publisher
StartPage 3738
SubjectTerms Adaptive algorithm
Adaptive filtering
Adaptive filters
Algorithm design and analysis
Convergence
Filtering algorithms
Least mean square algorithms
Least squares approximation
Noise measurement
Probability density function
proportionate-type normalized least mean square (PtNLMS) algorithm
Radar
sparse impulse response
Title Proportionate-type NLMS algorithms based on maximization of the joint conditional PDF for the weight deviation vector
URI https://ieeexplore.ieee.org/document/5495871
WOSCitedRecordID wos000287096003169&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELVKxQEuLC1ilw8cMWRr4zmiQgUSVJEKUm-VY48hiCaoTQufj-2kBSQu3LIoSmxFnjdv_OYRcmYQBaKvJdMiBRZFClgqI59B4OnA70IXU-HMJuLBgI9GkDTI-UoLg4hu8xle2ENXy1eFnFuq7NLkMh1uBeNrcRxXWq0Vn2Jbg7tWc_UqzGPnnGXCk02PIliKusz62-HLXk_1OdTtiHwPLu96V8NhUu35qt_3y3jFxZ3-1v--eJu0vwV8NFmFph3SwHyXbP7oPdgi88T6I0wdFVgis1QsHdw_DKl4ey6mWfkymVEb4hQtcjoRn9mkVmzSQlODGulrkeUlNem0yio-kSbXfWowsLv74ShXqkzcrZ5auPJAmzz1bx57t6z2YGCZARYl02AdraSIQg9Rc2ngB_ocpKdBhbEMPFQGJGieQqq4QE9oM2AvlArSbigMOtwjzbzIcZ9QCKXGMBBhh0NkYCdEaNKlQKPJkWMB8oC07ASO36s2G-N67g7_vnxENqpCvt0Odkya5XSOJ2RdLspsNj11_8YXzwy1Cg
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELUQIAEXlhax4wNHAlnc1nNEhYqKUkUqSNwqxx5DEE1QmxY-H9tJC0hcuGVRlNiKPG_e-M0j5MwgCsRAS0-LBDzGFHiJZIEHoa_DoAlNTIQzm2j1-_zpCeIlcr7QwiCi23yGF_bQ1fJVLqeWKrs0uUyDW8H4SoOxMCjVWgtGxTYHd83mqnWYt5x3lglQNkFiMJd1mRW4wefdnqpzqBoSBT5cdttXg0Fc7vqq3vjLesVFns7m_755i9S_JXw0XgSnbbKE2Q7Z-NF9sEamsXVIGDsysEDPkrG037sfUPH2nI_T4mU0oTbIKZpndCQ-01Gl2aS5pgY30tc8zQpqEmqVlowija871KBgd_fDka5UmchbPjVzBYI6eezcPLRvvcqFwUsNtCg8DdbTSgoW-YiaSwNAMOAgfQ0qasnQR2VgguYJJIoL9IU2A_YjqSBpRsLgw12ynOUZ7hEKkdQYhSJqcGAGeAJDkzCFGk2W3BIg90nNTuDwvWy0Mazm7uDvy6dk7fbhvjfsdft3h2S9LOvbzWFHZLkYT_GYrMpZkU7GJ-4_-QJrqrhR
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2010+IEEE+International+Conference+on+Acoustics%2C+Speech+and+Signal+Processing&rft.atitle=Proportionate-type+NLMS+algorithms+based+on+maximization+of+the+joint+conditional+PDF+for+the+weight+deviation+vector&rft.au=Wagner%2C+Kevin+T&rft.au=Doroslovac%CC%8Cki%2C+Milos%CC%8C+I&rft.date=2010-03-01&rft.pub=IEEE&rft.isbn=9781424442959&rft.issn=1520-6149&rft.spage=3738&rft.epage=3741&rft_id=info:doi/10.1109%2FICASSP.2010.5495871&rft.externalDocID=5495871
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1520-6149&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1520-6149&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1520-6149&client=summon