Online Object Tracking: A Benchmark

Object tracking is one of the most important components in numerous applications of computer vision. While much progress has been made in recent years with efforts on sharing code and datasets, it is of great importance to develop a library and benchmark to gauge the state of the art. After briefly...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2013 IEEE Conference on Computer Vision and Pattern Recognition s. 2411 - 2418
Hlavní autoři: Yi Wu, Jongwoo Lim, Ming-Hsuan Yang
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.06.2013
Témata:
ISSN:1063-6919, 1063-6919
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Object tracking is one of the most important components in numerous applications of computer vision. While much progress has been made in recent years with efforts on sharing code and datasets, it is of great importance to develop a library and benchmark to gauge the state of the art. After briefly reviewing recent advances of online object tracking, we carry out large scale experiments with various evaluation criteria to understand how these algorithms perform. The test image sequences are annotated with different attributes for performance evaluation and analysis. By analyzing quantitative results, we identify effective approaches for robust tracking and provide potential future research directions in this field.
ISSN:1063-6919
1063-6919
DOI:10.1109/CVPR.2013.312