A Real-Time Hand Gesture Recognition Approach Based on Motion Features of Feature Points
Dynamic hand gesture recognition enables people to communicate with computers naturally without any mechanical devices. Due to the spread of depth sensor such as Microsoft Kinect and Leap Motion, dynamic hand gesture recognition becomes possible for recognizing meticulous gesture information in real...
Uložené v:
| Vydané v: | 2014 IEEE 17th International Conference on Computational Science and Engineering s. 1096 - 1102 |
|---|---|
| Hlavní autori: | , , , , , |
| Médium: | Konferenčný príspevok.. |
| Jazyk: | English |
| Vydavateľské údaje: |
IEEE
01.12.2014
|
| Predmet: | |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Dynamic hand gesture recognition enables people to communicate with computers naturally without any mechanical devices. Due to the spread of depth sensor such as Microsoft Kinect and Leap Motion, dynamic hand gesture recognition becomes possible for recognizing meticulous gesture information in real time. However, most of these methods recognize the hand gesture by fuzzy features such as contour size, which cause imprecise hand gesture recognition. This paper presents a precise tracing of feature points including palm center, fingertips and joints by using Kinect. A novel recognition method based on precise motion features of these feature points is also presented. Having been tested with a series of applications, our method is proved to be robust and effective, and suitable for further application in real-time HCI systems. |
|---|---|
| AbstractList | Dynamic hand gesture recognition enables people to communicate with computers naturally without any mechanical devices. Due to the spread of depth sensor such as Microsoft Kinect and Leap Motion, dynamic hand gesture recognition becomes possible for recognizing meticulous gesture information in real time. However, most of these methods recognize the hand gesture by fuzzy features such as contour size, which cause imprecise hand gesture recognition. This paper presents a precise tracing of feature points including palm center, fingertips and joints by using Kinect. A novel recognition method based on precise motion features of these feature points is also presented. Having been tested with a series of applications, our method is proved to be robust and effective, and suitable for further application in real-time HCI systems. |
| Author | Yunzhe Jia Qun He Yingying She Ting Gu Qian Wang Baorong Yang |
| Author_xml | – sequence: 1 surname: Yingying She fullname: Yingying She email: yingyingshe@xmu.edu.cn organization: Software Sch., Xiamen Univ., Xiamen, China – sequence: 2 surname: Qian Wang fullname: Qian Wang email: 740409563@qq.com organization: Software Sch., Xiamen Univ., Xiamen, China – sequence: 3 surname: Yunzhe Jia fullname: Yunzhe Jia email: 345019290@qq.com organization: Software Sch., Xiamen Univ., Xiamen, China – sequence: 4 surname: Ting Gu fullname: Ting Gu email: soliwly@qq.com organization: Software Sch., Xiamen Univ., Xiamen, China – sequence: 5 surname: Qun He fullname: Qun He email: 378343237@qq.com organization: Software Sch., Xiamen Univ., Xiamen, China – sequence: 6 surname: Baorong Yang fullname: Baorong Yang email: ybr@xmu.edu.cn organization: Software Sch., Xiamen Univ., Xiamen, China |
| BookMark | eNo1jEtLw0AUhUdQ0Nbu3LmZP5A478cylj6EiqIV3JWbzI0OtJmQiQv_vfW1OofvO5wJOe1Sh4RccVZyzvzN_HlRCsZVKbg5IROurPfWO6bPySznWDNhrFHK2gvyWtEnhH2xjQeka-gCXWEePwY84ia9dXGMqaNV3w8Jmnd6CxkDPZL79COWCN_jTFP73-ljit2YL8lZC_uMs7-ckpflYjtfF5uH1d282hSRWz0WrQYhpEGsHZdBsBCYUqCUBCcVNth4Dg6MdNoG6ZiyUnuGtfSu1R5NLafk-vc3IuKuH-IBhs-dZUJaYeQXKMBPxg |
| CODEN | IEEPAD |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/CSE.2014.216 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 1479979805 9781479979813 1479979813 9781479979806 |
| EndPage | 1102 |
| ExternalDocumentID | 7023726 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IL ALMA_UNASSIGNED_HOLDINGS CBEJK RIB RIC RIE RIL |
| ID | FETCH-LOGICAL-i175t-f5a2236eeb813d20dd044a443a834ecec91a8a63857d380473590eb398f59e6b3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 13 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000380512100181&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Dec 20 05:19:03 EST 2023 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i175t-f5a2236eeb813d20dd044a443a834ecec91a8a63857d380473590eb398f59e6b3 |
| PageCount | 7 |
| ParticipantIDs | ieee_primary_7023726 |
| PublicationCentury | 2000 |
| PublicationDate | 2014-Dec. |
| PublicationDateYYYYMMDD | 2014-12-01 |
| PublicationDate_xml | – month: 12 year: 2014 text: 2014-Dec. |
| PublicationDecade | 2010 |
| PublicationTitle | 2014 IEEE 17th International Conference on Computational Science and Engineering |
| PublicationTitleAbbrev | CSE |
| PublicationYear | 2014 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssib026764477 |
| Score | 1.661438 |
| Snippet | Dynamic hand gesture recognition enables people to communicate with computers naturally without any mechanical devices. Due to the spread of depth sensor such... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1096 |
| SubjectTerms | Classification algorithms Feature extraction feature points Gesture recognition hand gesture recognition HCI Joints Labeling motion feature Thumb |
| Title | A Real-Time Hand Gesture Recognition Approach Based on Motion Features of Feature Points |
| URI | https://ieeexplore.ieee.org/document/7023726 |
| WOSCitedRecordID | wos000380512100181&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV27bsIwFLUAdejUVlD1LQ8dawiOE9sjRVCGFiH6EBvy40ZiSSoS-v29Do926NLFsixLlu5NfPw4x4eQ-wxBRSVOMeGFDwVnlvuEZdybOEu0TWqV68eznE7VYqFnDfJw0MIAQE0-g26o1nf5vnCbcFTWkwgwkqdN0pQy3Wq19t8OTyUiu5QHbrvuDV9HgbolujyYmf_yTqmhY3zyv0FPSedHg0dnB3Q5Iw3I22QxoHNc2bEg3KATk3v6hLP6Zg10vicCFTkd7N4Jp48IUZ5iy0vt1UPDeg87l7TI9nU6K1Z5VXbI-3j0NpywnTcCWyHgVyxLDAJ7CmBVP_Y88j4SwggRGxULcOB03yiDP1cifayiYDCsI9w4a4UJgNTG56SVFzlcEKpckmkhUwvWYbKsNoji3GbWApaCX5J2iMryc_v8xXIXkKu_m6_JcQj6lvFxQ1rVegO35Mh9VatyfVfn7Bu4CJkG |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3NT8IwGMYbRBM9qQHjtz14dDC7dm2PSECMQAii4Uba9V3CZTMw_Pt9Oz704MVL0zRLlvTd9uu25-lDyH2KUFEiUQF33PmGBZY5EaTMmSgV2orS5frRl8Ohmk71qEIedl4YACjFZ9Dw3fJfvsuTlf9U1pQIGMniPbIvOGfh2q21vXpYLJHtUu7U7brZfut48RZvMB9n_is9pYRH9_h_pz0h9R8XHh3t-HJKKpDVyLRFx7i2C7x1g_ZM5ugzPtdXC6DjrRQoz2hrs1M4fUJIOYojgzKth_oVHx68pHm67dNRPs-KZZ28dzuTdi_YpCMEc0R-EaTCINpjAKseI8dC50LODeeRURGHBBL9aJTB20tIF6nQRwzrEF-dtcISQGyjM1LN8gzOCVWJSDWXsQWbYLmsNshxZlNrAVvOLkjNz8rsc70BxmwzIZd_D9-Rw95k0J_1X4avV-TIF2Ct_7gm1WKxghtykHwV8-XitqzfN914nE0 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2014+IEEE+17th+International+Conference+on+Computational+Science+and+Engineering&rft.atitle=A+Real-Time+Hand+Gesture+Recognition+Approach+Based+on+Motion+Features+of+Feature+Points&rft.au=Yingying+She&rft.au=Qian+Wang&rft.au=Yunzhe+Jia&rft.au=Ting+Gu&rft.date=2014-12-01&rft.pub=IEEE&rft.spage=1096&rft.epage=1102&rft_id=info:doi/10.1109%2FCSE.2014.216&rft.externalDocID=7023726 |