Improving transfer learning accuracy by reusing Stacked Denoising Autoencoders
Transfer learning is a process that allows reusing a learning machine trained on a problem to solve a new problem. Transfer learning studies on shallow architectures show low performance as they are generally based on hand-crafted features obtained from experts. It is therefore interesting to study...
Uloženo v:
| Vydáno v: | Conference proceedings - IEEE International Conference on Systems, Man, and Cybernetics s. 1380 - 1387 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
01.10.2014
|
| Témata: | |
| ISSN: | 1062-922X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
Buďte první, kdo okomentuje tento záznam!