Unsupervised Cross-Dataset Person Re-identification by Transfer Learning of Spatial-Temporal Patterns

Most of the proposed person re-identification algorithms conduct supervised training and testing on single labeled datasets with small size, so directly deploying these trained models to a large-scale real-world camera network may lead to poor performance due to underfitting. It is challenging to in...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition s. 7948 - 7956
Hlavní autoři: Lv, Jianming, Chen, Weihang, Li, Qing, Yang, Can
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.06.2018
Témata:
ISSN:1063-6919
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Most of the proposed person re-identification algorithms conduct supervised training and testing on single labeled datasets with small size, so directly deploying these trained models to a large-scale real-world camera network may lead to poor performance due to underfitting. It is challenging to incrementally optimize the models by using the abundant unlabeled data collected from the target domain. To address this challenge, we propose an unsupervised incremental learning algorithm, TFusion, which is aided by the transfer learning of the pedestrians' spatio-temporal patterns in the target domain. Specifically, the algorithm firstly transfers the visual classifier trained from small labeled source dataset to the unlabeled target dataset so as to learn the pedestrians' spatial-temporal patterns. Secondly, a Bayesian fusion model is proposed to combine the learned spatio-temporal patterns with visual features to achieve a significantly improved classifier. Finally, we propose a learning-to-rank based mutual promotion procedure to incrementally optimize the classifiers based on the unlabeled data in the target domain. Comprehensive experiments based on multiple real surveillance datasets are conducted, and the results show that our algorithm gains significant improvement compared with the state-of-art cross-dataset unsupervised person re-identification algorithms.
AbstractList Most of the proposed person re-identification algorithms conduct supervised training and testing on single labeled datasets with small size, so directly deploying these trained models to a large-scale real-world camera network may lead to poor performance due to underfitting. It is challenging to incrementally optimize the models by using the abundant unlabeled data collected from the target domain. To address this challenge, we propose an unsupervised incremental learning algorithm, TFusion, which is aided by the transfer learning of the pedestrians' spatio-temporal patterns in the target domain. Specifically, the algorithm firstly transfers the visual classifier trained from small labeled source dataset to the unlabeled target dataset so as to learn the pedestrians' spatial-temporal patterns. Secondly, a Bayesian fusion model is proposed to combine the learned spatio-temporal patterns with visual features to achieve a significantly improved classifier. Finally, we propose a learning-to-rank based mutual promotion procedure to incrementally optimize the classifiers based on the unlabeled data in the target domain. Comprehensive experiments based on multiple real surveillance datasets are conducted, and the results show that our algorithm gains significant improvement compared with the state-of-art cross-dataset unsupervised person re-identification algorithms.
Author Yang, Can
Li, Qing
Chen, Weihang
Lv, Jianming
Author_xml – sequence: 1
  givenname: Jianming
  surname: Lv
  fullname: Lv, Jianming
– sequence: 2
  givenname: Weihang
  surname: Chen
  fullname: Chen, Weihang
– sequence: 3
  givenname: Qing
  surname: Li
  fullname: Li, Qing
– sequence: 4
  givenname: Can
  surname: Yang
  fullname: Yang, Can
BookMark eNotjM1KAzEYAKMoWGvPHrzkBVK_JJvd5CjrLxQsdfVastkvEmmzSxKFvr0FPQ3MwFySszhGJOSaw5JzMLftx3qzFMD1EkALc0IWptFcSV3XlQBzSmYcaslqw80FWeT8BQCi1lJXakbwPebvCdNPyDjQNo05s3tbbMZC15jyGOkGWRgwluCDsyUcTX-gXbIxe0x0hTbFED_p6OnbdOx2xzrcT2OyO7q2pWCK-Yqce7vLuPjnnHSPD137zFavTy_t3YoF3qjCvPS6Qu68sKBNXymvlBYgtB96K6sBOPC6kWIAdBIsr4zzdmikc8bJXss5ufnbBkTcTinsbTpstWq0EY38BebfWaM
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/CVPR.2018.00829
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISBN 9781538664209
1538664208
EISSN 1063-6919
EndPage 7956
ExternalDocumentID 8578927
Genre orig-research
GroupedDBID 6IE
6IH
6IL
6IN
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
OCL
RIE
RIL
RIO
ID FETCH-LOGICAL-i175t-f3f84e1cf2a089b45f5582028fdba34d01016732d0ec30a149cfad73cc9c3b83
IEDL.DBID RIE
ISICitedReferencesCount 163
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000457843608012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:52:16 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-f3f84e1cf2a089b45f5582028fdba34d01016732d0ec30a149cfad73cc9c3b83
PageCount 9
ParticipantIDs ieee_primary_8578927
PublicationCentury 2000
PublicationDate 2018-Jun
PublicationDateYYYYMMDD 2018-06-01
PublicationDate_xml – month: 06
  year: 2018
  text: 2018-Jun
PublicationDecade 2010
PublicationTitle 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition
PublicationTitleAbbrev CVPR
PublicationYear 2018
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0002683845
ssj0003211698
Score 2.539588
Snippet Most of the proposed person re-identification algorithms conduct supervised training and testing on single labeled datasets with small size, so directly...
SourceID ieee
SourceType Publisher
StartPage 7948
SubjectTerms Cameras
Feature extraction
Optimization
Silicon
Supervised learning
Surveillance
Visualization
Title Unsupervised Cross-Dataset Person Re-identification by Transfer Learning of Spatial-Temporal Patterns
URI https://ieeexplore.ieee.org/document/8578927
WOSCitedRecordID wos000457843608012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELXaioGpQIv4lgdGTNPY8cdcqJiqqCqoW-XYDqqE0qpJkfj3nB2rMLCwJV4S-Xy-d_a7dwjdW5ZlEmAxsWPHCWOUEmUNuLsVXnwvzTRrm02I2UwulyrvoIdDLYxzLpDP3KN_DHf5dmP2_qhsJGF5qVR0UVcI0dZqHc5TUi6pjDdk_p1CZsOVjGo-40SNJm_53HO5PHlSekj5q51KiCbT_v_-4wQNf8rycH4IOKeo46oz1I84EkcvrQfIvVb1fus3gRrGJz4OkifdQLxqcB4QNp47sraRKBRsg4svHOIWfAhH0dV3vCmx71kMa5QsWg2rD5wHRc6qHqLF9HkxeSGxnQJZA0ZoSElLydzYlKlOpCpYVoKZUsAXpS00ZTaozQma2sQZmmhInUypraDGKEMLSc9Rr9pU7gJhyGAFZ0XGtQI4lYGLcwt7puWSa6oKeokGftJW21YwYxXn6-rv4Wt07K3S8q9uUK_Z7d0tOjKfzbre3QUrfwP-D6d8
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8MgFCZzmuhp6mb8LQeP4tpCKZyny4xzaZZqdlsoULPEdMvamfjfC5RMD168tVza8Hi878H3vgfArSJxzAwsRirUFBGCMeJKGndXiRXfi2JBmmYTyWTCZjOetsDdthZGa-3IZ_rePrq7fLWUG3tU1mdmefEo2QG7MSFR2FRrbU9UIsow83dk9h2b3IZy5vV8woD3B2_p1LK5LH2SWVD5q6GKiyfDzv_-5BD0fgrzYLoNOUegpctj0PFIEno_rbpAv5bVZmW3gcqMD2wkRA-iNhGrhqnD2HCq0UJ5qpCzDsy_oItc5kPQy66-w2UBbddis0pR1qhYfcDUaXKWVQ9kw8dsMEK-oQJaGJRQowIXjOhQFpEIGM9JXBhDRQZhFCoXmCinN5fgSAVa4kCY5EkWQiVYSi5xzvAJaJfLUp8CaHLYhJI8poIbQBUbJ6fK7JqKMiowz_EZ6NpJm68ayYy5n6_zv4dvwP4oexnPx0-T5wtwYC3UsLEuQbteb_QV2JOf9aJaXzuLfwPhQqrD
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2018+IEEE%2FCVF+Conference+on+Computer+Vision+and+Pattern+Recognition&rft.atitle=Unsupervised+Cross-Dataset+Person+Re-identification+by+Transfer+Learning+of+Spatial-Temporal+Patterns&rft.au=Lv%2C+Jianming&rft.au=Chen%2C+Weihang&rft.au=Li%2C+Qing&rft.au=Yang%2C+Can&rft.date=2018-06-01&rft.pub=IEEE&rft.eissn=1063-6919&rft.spage=7948&rft.epage=7956&rft_id=info:doi/10.1109%2FCVPR.2018.00829&rft.externalDocID=8578927