SMSP-EMOA: Augmenting SMS-EMOA with the Prospect Indicator for Multiobjective Optimization
This paper studies a new evolutionary multiobjective optimization algorithm (EMOA) that leverages quality indicators in parent selection and environmental selection operators. The proposed indicator-based EMOA, called SMSPEMOA, is designed as an extension to SMS-EMOA, which is one of the most succes...
Saved in:
| Published in: | 2011 IEEE 23rd International Conference on Tools with Artificial Intelligence pp. 261 - 268 |
|---|---|
| Main Authors: | , , |
| Format: | Conference Proceeding |
| Language: | English |
| Published: |
IEEE
01.11.2011
|
| Subjects: | |
| ISBN: | 145772068X, 9781457720680 |
| ISSN: | 1082-3409 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | This paper studies a new evolutionary multiobjective optimization algorithm (EMOA) that leverages quality indicators in parent selection and environmental selection operators. The proposed indicator-based EMOA, called SMSPEMOA, is designed as an extension to SMS-EMOA, which is one of the most successfully and widely used indicator based EMOAs. SMSP-EMOA uses the prospect indicator in its parent selection and the hyper volume indicator in its environmental selection. The prospect indicator measures the potential (or prospect) of each individual to reproduce offspring that dominate itself and spread out in the objective space. It allows the parent selection operator to (1) maintain sufficient selection pressure, even in high dimensional MOPs, thereby improving convergence velocity toward the Pareto-optimal front, and (2) diversify individuals, even in high dimensional MOPs, thereby spreading out individuals in the objective space. Experimental results show that SMSP-EMOA's parent selection operator complement its environmental selection operator. SMSP-EMOA outperforms SMS-EMOA and well-known traditional EMOAs in optimality and convergence velocity without sacrificing the diversity of individuals. |
|---|---|
| AbstractList | This paper studies a new evolutionary multiobjective optimization algorithm (EMOA) that leverages quality indicators in parent selection and environmental selection operators. The proposed indicator-based EMOA, called SMSPEMOA, is designed as an extension to SMS-EMOA, which is one of the most successfully and widely used indicator based EMOAs. SMSP-EMOA uses the prospect indicator in its parent selection and the hyper volume indicator in its environmental selection. The prospect indicator measures the potential (or prospect) of each individual to reproduce offspring that dominate itself and spread out in the objective space. It allows the parent selection operator to (1) maintain sufficient selection pressure, even in high dimensional MOPs, thereby improving convergence velocity toward the Pareto-optimal front, and (2) diversify individuals, even in high dimensional MOPs, thereby spreading out individuals in the objective space. Experimental results show that SMSP-EMOA's parent selection operator complement its environmental selection operator. SMSP-EMOA outperforms SMS-EMOA and well-known traditional EMOAs in optimality and convergence velocity without sacrificing the diversity of individuals. |
| Author | Boonma, P. Phan, D. H. Suzuki, J. |
| Author_xml | – sequence: 1 givenname: D. H. surname: Phan fullname: Phan, D. H. email: phdung@cs.umb.edu organization: Dept. of Comput. Sci., Univ. of Massachusetts, Boston, Boston, MA, USA – sequence: 2 givenname: J. surname: Suzuki fullname: Suzuki, J. email: jxs@cs.umb.edu organization: Dept. of Comput. Sci., Univ. of Massachusetts, Boston, Boston, MA, USA – sequence: 3 givenname: P. surname: Boonma fullname: Boonma, P. email: pruet@eng.cmu.ac.th organization: Dept. of Comput. Eng., Chiang Mai Univ., Chiang Mai, Thailand |
| BookMark | eNotzM9LAkEcBfCJDFLz2KnL_ANr853f020RrQVFQYPoIrO7Mzqiu7I7FvXXt1SHx4PPgzdAvaquHEL3QMYAxDxmk02ajSkBGHN1hUZGaaKkEVwYqa7RALhQihKp33qoD0TThHFibtGgbQ-EUCIo66P39WK9SqaLZfqE08vu5KoYqh3u9BfxZ4h7HPcOr5q6Pbsi4qwqQ2Fj3WDfZXE5xlDnh24JHw4vzzGcwrftrLpDN94eWzf67yF6nU03k5dkvnzOJuk8CaBETDyzknqjJC-MLXKVS6VBWOsKURLmGUihC3C0LIHYkjMnWQ6ag89L7alzbIge_n6Dc257bsLJNl9bCYQxptgP7nlVsg |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IH CBEJK RIE RIO |
| DOI | 10.1109/ICTAI.2011.47 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISBN | 9780769545967 0769545963 |
| EndPage | 268 |
| ExternalDocumentID | 6103337 |
| Genre | orig-research |
| GroupedDBID | 23M 29O 6IE 6IF 6IH 6IK 6IL 6IN AAWTH ABLEC ACGFS ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IJVOP M43 OCL RIE RIL RIO |
| ID | FETCH-LOGICAL-i175t-f3a62f9764c9acb7b67815aaec5d03f31658c1e2dd10ad43e63b1841fbd8f2ee3 |
| IEDL.DBID | RIE |
| ISBN | 145772068X 9781457720680 |
| ISICitedReferencesCount | 3 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000299009900039&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1082-3409 |
| IngestDate | Wed Aug 27 03:14:33 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i175t-f3a62f9764c9acb7b67815aaec5d03f31658c1e2dd10ad43e63b1841fbd8f2ee3 |
| PageCount | 8 |
| ParticipantIDs | ieee_primary_6103337 |
| PublicationCentury | 2000 |
| PublicationDate | 2011-Nov. |
| PublicationDateYYYYMMDD | 2011-11-01 |
| PublicationDate_xml | – month: 11 year: 2011 text: 2011-Nov. |
| PublicationDecade | 2010 |
| PublicationTitle | 2011 IEEE 23rd International Conference on Tools with Artificial Intelligence |
| PublicationTitleAbbrev | ictai |
| PublicationYear | 2011 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0020523 ssj0000669681 ssib015832587 |
| Score | 1.5038468 |
| Snippet | This paper studies a new evolutionary multiobjective optimization algorithm (EMOA) that leverages quality indicators in parent selection and environmental... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 261 |
| SubjectTerms | Algorithm design and analysis Convergence Evolutionary multiobjective optimization algorithms (EMOAs) Heuristic algorithms Hypercubes Indicator-based EMOAs IP networks Measurement Optimization Quality indicators |
| Title | SMSP-EMOA: Augmenting SMS-EMOA with the Prospect Indicator for Multiobjective Optimization |
| URI | https://ieeexplore.ieee.org/document/6103337 |
| WOSCitedRecordID | wos000299009900039&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La8JAEB5UeuipDy19s4ceu9XsZpPYm4hSoT5AW6QXyb7EQmOx2t_f2U1UKL30luxhCctkvm9m55sBuEMUC0PBFOVaKhoyq2kaKkW1SpqWSSalT-a8PseDQTKdNkcluN9pYYwxvvjMPLhHf5evl2rjUmV1hHrOeVyGchxHuVZrazuBQNMUBdXIvbBr-7Ir92Au_ZkX2zPKMajxIi-B3LIRJdNt76fivbFvxlnvtSetXt7q89cIFo9A3aP_ffsx1PZSPjLagdQJlEx2CkfbWQ6k-LWr8Dbuj0e00x-2HklrM_dFRNmc4KpfJC5fS5Asus28OpP0MnfFgyE7Qd5LvJB3Kd9z_0mG6Ik-ColnDV66nUn7iRZzF-gCycSaWp5GzCJPCVUzVTKWCGiBSFOjhG5wywNkLSowTOugkeqQm4hLDBQDK3VimTH8DCrZMjPnQHAnG6Y8EtZRBWYTYQKOoGiiCHkGFxdQdUc1-8xba8yKU7r8e_kKDn1K10sBr6GyXm3MDRyo7_Xia3Xr7eEHl5CtJA |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEN4gmugJFYxv9-DRlXYfpXgjBAKRVwIa4oV0X0YTi0Hw9zu7LZAYL97aPWyazXS-b2bnm0HoFlCMc0EVYVoqwqnVJOFKEa3iuqWSSumTOc-92mAQT6f1UQHdbbQwxhhffGbu3aO_y9dztXKpsipAPWOstoN2Bec0yNRaa-sJBRinyMlG5odd45dNwQd1CdCs3J4SBmGNl3kJYJdBFE_X3Z_y92DbjrPabU4a3azZ568hLB6D2qX_ff0hqmzFfHi0gakjVDDpMSqtpzng_Ocuo5dxfzwirf6w8YAbq1dfRpS-Ylj1i9hlbDHQRbeZ12fibuoueSBox8B8sZfyzuV75kHxEHzRRy7yrKCndmvS7JB88gJ5AzqxJJYlEbXAVLiqJ0rWJEBaKJLEKKEDZlkIvEWFhmodBonmzERMQqgYWqljS41hJ6iYzlNzijDsZHnCImEdWaA2FiZkAIsmioBpMHGGyu6oZp9Zc41Zfkrnfy_foP3OpN-b9bqDxwt04BO8Xhh4iYrLxcpcoT31vXz7Wlx72_gB0R2waw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2011+IEEE+23rd+International+Conference+on+Tools+with+Artificial+Intelligence&rft.atitle=SMSP-EMOA%3A+Augmenting+SMS-EMOA+with+the+Prospect+Indicator+for+Multiobjective+Optimization&rft.au=Phan%2C+D.+H.&rft.au=Suzuki%2C+J.&rft.au=Boonma%2C+P.&rft.date=2011-11-01&rft.pub=IEEE&rft.isbn=9781457720680&rft.issn=1082-3409&rft.spage=261&rft.epage=268&rft_id=info:doi/10.1109%2FICTAI.2011.47&rft.externalDocID=6103337 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1082-3409&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1082-3409&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1082-3409&client=summon |

