SMSP-EMOA: Augmenting SMS-EMOA with the Prospect Indicator for Multiobjective Optimization

This paper studies a new evolutionary multiobjective optimization algorithm (EMOA) that leverages quality indicators in parent selection and environmental selection operators. The proposed indicator-based EMOA, called SMSPEMOA, is designed as an extension to SMS-EMOA, which is one of the most succes...

Full description

Saved in:
Bibliographic Details
Published in:2011 IEEE 23rd International Conference on Tools with Artificial Intelligence pp. 261 - 268
Main Authors: Phan, D. H., Suzuki, J., Boonma, P.
Format: Conference Proceeding
Language:English
Published: IEEE 01.11.2011
Subjects:
ISBN:145772068X, 9781457720680
ISSN:1082-3409
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This paper studies a new evolutionary multiobjective optimization algorithm (EMOA) that leverages quality indicators in parent selection and environmental selection operators. The proposed indicator-based EMOA, called SMSPEMOA, is designed as an extension to SMS-EMOA, which is one of the most successfully and widely used indicator based EMOAs. SMSP-EMOA uses the prospect indicator in its parent selection and the hyper volume indicator in its environmental selection. The prospect indicator measures the potential (or prospect) of each individual to reproduce offspring that dominate itself and spread out in the objective space. It allows the parent selection operator to (1) maintain sufficient selection pressure, even in high dimensional MOPs, thereby improving convergence velocity toward the Pareto-optimal front, and (2) diversify individuals, even in high dimensional MOPs, thereby spreading out individuals in the objective space. Experimental results show that SMSP-EMOA's parent selection operator complement its environmental selection operator. SMSP-EMOA outperforms SMS-EMOA and well-known traditional EMOAs in optimality and convergence velocity without sacrificing the diversity of individuals.
AbstractList This paper studies a new evolutionary multiobjective optimization algorithm (EMOA) that leverages quality indicators in parent selection and environmental selection operators. The proposed indicator-based EMOA, called SMSPEMOA, is designed as an extension to SMS-EMOA, which is one of the most successfully and widely used indicator based EMOAs. SMSP-EMOA uses the prospect indicator in its parent selection and the hyper volume indicator in its environmental selection. The prospect indicator measures the potential (or prospect) of each individual to reproduce offspring that dominate itself and spread out in the objective space. It allows the parent selection operator to (1) maintain sufficient selection pressure, even in high dimensional MOPs, thereby improving convergence velocity toward the Pareto-optimal front, and (2) diversify individuals, even in high dimensional MOPs, thereby spreading out individuals in the objective space. Experimental results show that SMSP-EMOA's parent selection operator complement its environmental selection operator. SMSP-EMOA outperforms SMS-EMOA and well-known traditional EMOAs in optimality and convergence velocity without sacrificing the diversity of individuals.
Author Boonma, P.
Phan, D. H.
Suzuki, J.
Author_xml – sequence: 1
  givenname: D. H.
  surname: Phan
  fullname: Phan, D. H.
  email: phdung@cs.umb.edu
  organization: Dept. of Comput. Sci., Univ. of Massachusetts, Boston, Boston, MA, USA
– sequence: 2
  givenname: J.
  surname: Suzuki
  fullname: Suzuki, J.
  email: jxs@cs.umb.edu
  organization: Dept. of Comput. Sci., Univ. of Massachusetts, Boston, Boston, MA, USA
– sequence: 3
  givenname: P.
  surname: Boonma
  fullname: Boonma, P.
  email: pruet@eng.cmu.ac.th
  organization: Dept. of Comput. Eng., Chiang Mai Univ., Chiang Mai, Thailand
BookMark eNotzM9LAkEcBfCJDFLz2KnL_ANr853f020RrQVFQYPoIrO7Mzqiu7I7FvXXt1SHx4PPgzdAvaquHEL3QMYAxDxmk02ajSkBGHN1hUZGaaKkEVwYqa7RALhQihKp33qoD0TThHFibtGgbQ-EUCIo66P39WK9SqaLZfqE08vu5KoYqh3u9BfxZ4h7HPcOr5q6Pbsi4qwqQ2Fj3WDfZXE5xlDnh24JHw4vzzGcwrftrLpDN94eWzf67yF6nU03k5dkvnzOJuk8CaBETDyzknqjJC-MLXKVS6VBWOsKURLmGUihC3C0LIHYkjMnWQ6ag89L7alzbIge_n6Dc257bsLJNl9bCYQxptgP7nlVsg
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/ICTAI.2011.47
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9780769545967
0769545963
EndPage 268
ExternalDocumentID 6103337
Genre orig-research
GroupedDBID 23M
29O
6IE
6IF
6IH
6IK
6IL
6IN
AAWTH
ABLEC
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
M43
OCL
RIE
RIL
RIO
ID FETCH-LOGICAL-i175t-f3a62f9764c9acb7b67815aaec5d03f31658c1e2dd10ad43e63b1841fbd8f2ee3
IEDL.DBID RIE
ISBN 145772068X
9781457720680
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000299009900039&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1082-3409
IngestDate Wed Aug 27 03:14:33 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-f3a62f9764c9acb7b67815aaec5d03f31658c1e2dd10ad43e63b1841fbd8f2ee3
PageCount 8
ParticipantIDs ieee_primary_6103337
PublicationCentury 2000
PublicationDate 2011-Nov.
PublicationDateYYYYMMDD 2011-11-01
PublicationDate_xml – month: 11
  year: 2011
  text: 2011-Nov.
PublicationDecade 2010
PublicationTitle 2011 IEEE 23rd International Conference on Tools with Artificial Intelligence
PublicationTitleAbbrev ictai
PublicationYear 2011
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0020523
ssj0000669681
ssib015832587
Score 1.5038468
Snippet This paper studies a new evolutionary multiobjective optimization algorithm (EMOA) that leverages quality indicators in parent selection and environmental...
SourceID ieee
SourceType Publisher
StartPage 261
SubjectTerms Algorithm design and analysis
Convergence
Evolutionary multiobjective optimization algorithms (EMOAs)
Heuristic algorithms
Hypercubes
Indicator-based EMOAs
IP networks
Measurement
Optimization
Quality indicators
Title SMSP-EMOA: Augmenting SMS-EMOA with the Prospect Indicator for Multiobjective Optimization
URI https://ieeexplore.ieee.org/document/6103337
WOSCitedRecordID wos000299009900039&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La8JAEB5UeuipDy19s4ceu9XsZpPYm4hSoT5AW6QXyb7EQmOx2t_f2U1UKL30luxhCctkvm9m55sBuEMUC0PBFOVaKhoyq2kaKkW1SpqWSSalT-a8PseDQTKdNkcluN9pYYwxvvjMPLhHf5evl2rjUmV1hHrOeVyGchxHuVZrazuBQNMUBdXIvbBr-7Ir92Au_ZkX2zPKMajxIi-B3LIRJdNt76fivbFvxlnvtSetXt7q89cIFo9A3aP_ffsx1PZSPjLagdQJlEx2CkfbWQ6k-LWr8Dbuj0e00x-2HklrM_dFRNmc4KpfJC5fS5Asus28OpP0MnfFgyE7Qd5LvJB3Kd9z_0mG6Ik-ColnDV66nUn7iRZzF-gCycSaWp5GzCJPCVUzVTKWCGiBSFOjhG5wywNkLSowTOugkeqQm4hLDBQDK3VimTH8DCrZMjPnQHAnG6Y8EtZRBWYTYQKOoGiiCHkGFxdQdUc1-8xba8yKU7r8e_kKDn1K10sBr6GyXm3MDRyo7_Xia3Xr7eEHl5CtJA
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEN4gmugJFYxv9-DRlXYfpXgjBAKRVwIa4oV0X0YTi0Hw9zu7LZAYL97aPWyazXS-b2bnm0HoFlCMc0EVYVoqwqnVJOFKEa3iuqWSSumTOc-92mAQT6f1UQHdbbQwxhhffGbu3aO_y9dztXKpsipAPWOstoN2Bec0yNRaa-sJBRinyMlG5odd45dNwQd1CdCs3J4SBmGNl3kJYJdBFE_X3Z_y92DbjrPabU4a3azZ568hLB6D2qX_ff0hqmzFfHi0gakjVDDpMSqtpzng_Ocuo5dxfzwirf6w8YAbq1dfRpS-Ylj1i9hlbDHQRbeZ12fibuoueSBox8B8sZfyzuV75kHxEHzRRy7yrKCndmvS7JB88gJ5AzqxJJYlEbXAVLiqJ0rWJEBaKJLEKKEDZlkIvEWFhmodBonmzERMQqgYWqljS41hJ6iYzlNzijDsZHnCImEdWaA2FiZkAIsmioBpMHGGyu6oZp9Zc41Zfkrnfy_foP3OpN-b9bqDxwt04BO8Xhh4iYrLxcpcoT31vXz7Wlx72_gB0R2waw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2011+IEEE+23rd+International+Conference+on+Tools+with+Artificial+Intelligence&rft.atitle=SMSP-EMOA%3A+Augmenting+SMS-EMOA+with+the+Prospect+Indicator+for+Multiobjective+Optimization&rft.au=Phan%2C+D.+H.&rft.au=Suzuki%2C+J.&rft.au=Boonma%2C+P.&rft.date=2011-11-01&rft.pub=IEEE&rft.isbn=9781457720680&rft.issn=1082-3409&rft.spage=261&rft.epage=268&rft_id=info:doi/10.1109%2FICTAI.2011.47&rft.externalDocID=6103337
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1082-3409&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1082-3409&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1082-3409&client=summon