Fast fractal image encoding based on the extreme difference feature of normalized block
Feature vector method for fast fractal image encoding is considered as one of the most innovative and promising approaches, but it suffers from several drawbacks, especially high dimensionality of feature vectors. Thus, an alternative feature method to reduce fractal encoding time is proposed in thi...
Uložené v:
| Vydané v: | 2009 IEEE International Conference on Intelligent Computing and Intelligent Systems Ročník 4; s. 159 - 163 |
|---|---|
| Hlavný autor: | |
| Médium: | Konferenčný príspevok.. |
| Jazyk: | English |
| Vydavateľské údaje: |
IEEE
01.11.2009
|
| Predmet: | |
| ISBN: | 9781424447541, 1424447542 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Feature vector method for fast fractal image encoding is considered as one of the most innovative and promising approaches, but it suffers from several drawbacks, especially high dimensionality of feature vectors. Thus, an alternative feature method to reduce fractal encoding time is proposed in this paper. Which is based on a newly-defined concept of the extreme difference feature, and proved an inequality linking the root-mean-square and the extreme difference feature of normalized block mathematically. By sorting the blocks in the codebook according to their the extreme difference feature, the encoder uses the bisection search method to find out the nearest codebook block to an input range block in the sense of the extreme difference feature. After that, the encoder further visits the codebook blocks in the vicinity of the nearest codebook block in order to search out the best matched codebook block to the range block being encoded. Computer simulation on four popular 512×512 test images demonstrate that the proposed scheme not only can averagely achieve the speed up of 25 times, but also provides the same image quality as the full search algorithm. Besides, its performance is better than those of the variance-based algorithm and one-norm of normalised block algorithm. |
|---|---|
| AbstractList | Feature vector method for fast fractal image encoding is considered as one of the most innovative and promising approaches, but it suffers from several drawbacks, especially high dimensionality of feature vectors. Thus, an alternative feature method to reduce fractal encoding time is proposed in this paper. Which is based on a newly-defined concept of the extreme difference feature, and proved an inequality linking the root-mean-square and the extreme difference feature of normalized block mathematically. By sorting the blocks in the codebook according to their the extreme difference feature, the encoder uses the bisection search method to find out the nearest codebook block to an input range block in the sense of the extreme difference feature. After that, the encoder further visits the codebook blocks in the vicinity of the nearest codebook block in order to search out the best matched codebook block to the range block being encoded. Computer simulation on four popular 512×512 test images demonstrate that the proposed scheme not only can averagely achieve the speed up of 25 times, but also provides the same image quality as the full search algorithm. Besides, its performance is better than those of the variance-based algorithm and one-norm of normalised block algorithm. |
| Author | Gaoping Li |
| Author_xml | – sequence: 1 surname: Gaoping Li fullname: Gaoping Li organization: Coll. of Comput. Sci. & Technol., Southwest Univ. for Nat., Chengdu, China |
| BookMark | eNpNkN1KAzEQhSNa0NZ9AhHyArsmm2SzuZRitVDwoop4VbLJTF3dH8lGUJ_eiL1w5uJwDh8DZ-bkZBgHIOSSs4JzZq7Wy7Tb521RMmYKJZSuTHVEMqNrLksppRY1P_7vleQzMv_FDVPcsFOSTdMrSyOV4KU4I08rO0WKwbpoO9r2dg8UBjf6dtjTxk7g6TjQ-JLSzxigB-pbRAiJAYpg40cAOiIdxtDbrv1OfNON7u2czNB2E2QHXZDH1c3D8i7f3N-ul9ebvOVaxRxL8EqhFyiUkVwJrIAx57m3lfaVdTUKC-hQcC1r3ZQSLHhX1tLohAqxIBd_d1sA2L2H1CB87Q6_ET8Vx1l4 |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/ICICISYS.2009.5357696 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 9781424447381 1424447380 |
| EndPage | 163 |
| ExternalDocumentID | 5357696 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IF 6IK 6IL 6IN AAJGR AARBI AAWTH ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK IERZE OCL RIE RIL |
| ID | FETCH-LOGICAL-i175t-f2ed55fd3f3594153f6e00cd1da67d6ac8f3aefcf317487b24eaedc28497f6e33 |
| IEDL.DBID | RIE |
| ISBN | 9781424447541 1424447542 |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000284972300035&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Aug 27 02:42:16 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| LCCN | 2009905190 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i175t-f2ed55fd3f3594153f6e00cd1da67d6ac8f3aefcf317487b24eaedc28497f6e33 |
| PageCount | 5 |
| ParticipantIDs | ieee_primary_5357696 |
| PublicationCentury | 2000 |
| PublicationDate | 2009-Nov. |
| PublicationDateYYYYMMDD | 2009-11-01 |
| PublicationDate_xml | – month: 11 year: 2009 text: 2009-Nov. |
| PublicationDecade | 2000 |
| PublicationTitle | 2009 IEEE International Conference on Intelligent Computing and Intelligent Systems |
| PublicationTitleAbbrev | ICICISYS |
| PublicationYear | 2009 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0000453123 |
| Score | 1.4397813 |
| Snippet | Feature vector method for fast fractal image encoding is considered as one of the most innovative and promising approaches, but it suffers from several... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 159 |
| SubjectTerms | Educational institutions Encoding fractal Fractals Image coding Image quality Image reconstruction Joining processes Runtime Search methods Sorting the extreme difference feature |
| Title | Fast fractal image encoding based on the extreme difference feature of normalized block |
| URI | https://ieeexplore.ieee.org/document/5357696 |
| Volume | 4 |
| WOSCitedRecordID | wos000284972300035&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA7b8OBJZRN_k4NH65qmSdrzcCjIGMwf8zTa5AWKsx1b58G_3pesmwhepJe2PEJJ4H1f8_J9j5DryEoeKQFBapkrM0IcJIkIA5EDhDEYnfvWCS-PajRKptN03CI3Oy0MAPjDZ3Drbn0t31R67bbK-oIjO05lm7SVUhut1m4_BakJxyy81W7FrrPr1tKpeWaNgoeFaf9hgNfkbbJxrGwG_tVhxQPM8OB_n3ZIej9KPTreYdARaUHZJa_DbFVT6_RP2ZwWH5gyqPOrdCHUwZahVUmR-VHMzG5_kG7bpOBoFrzVJ60sLR2fnRdfGJ8j5r33yPPw7mlwHzQNFIICWUEd2AiMENZwy0WKSM2thDDUhplMKiMznViegdUWSQT-uORRDBkuDyJWqjCU82PSKasSTgiVKkRmY4Vh0sSaZXmaKMOiXDiHe6Qcp6TrJmW22HhkzJr5OPv79TnZ91UZr-m7IJ16uYZLsqc_62K1vPIL-w0RKqCw |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8NAEB1qFfSk0orf7sGjsdlsNh_nYqlYS6FV66kk2Vko1kTa1IO_3tltWhG8SC5JGJawC_Nedva9Abj2dCC8UKITa27KjOg7USRdR6aIro8qS23rhOde2O9H43E8qMHNRguDiPbwGd6aW1vLV0W2NFtlLSmIHcfBFmxL3_f4Sq212VEhciIoD6_VW77p7bo2daqeeaXh4W7cum_TNXwdrjwrq6F_9VixENPZ_9_HHUDzR6vHBhsUOoQa5g146SSLkmmjgEpmbPpOSYMZx0oTwgxwKVbkjLgfo9xsdgjZulEKjabRmn2yQrPcMNrZ9IviU0K9tyY8de5G7a5TtVBwpsQLSkd7qKTUSmghY8JqoQN03UxxlQShCpIs0iJBnWmiEfTrkno-JrRAhFlxSKFCHEE9L3I8BhaELnEbLRUPlJ_xJI2jUHEvlcbjnkjHCTTMpEw-Vi4Zk2o-Tv9-fQW73dFjb9K77z-cwZ6t0ViF3znUy_kSL2An-yyni_mlXeRvn62j9w |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2009+IEEE+International+Conference+on+Intelligent+Computing+and+Intelligent+Systems&rft.atitle=Fast+fractal+image+encoding+based+on+the+extreme+difference+feature+of+normalized+block&rft.au=Gaoping+Li&rft.date=2009-11-01&rft.pub=IEEE&rft.isbn=9781424447541&rft.volume=4&rft.spage=159&rft.epage=163&rft_id=info:doi/10.1109%2FICICISYS.2009.5357696&rft.externalDocID=5357696 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424447541/lc.gif&client=summon&freeimage=true |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424447541/mc.gif&client=summon&freeimage=true |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424447541/sc.gif&client=summon&freeimage=true |

