Fuzzy clustering of multi-view relational data with pairwise constraints
Thvs paper presents SS-MVFCVSMdd, a semi-supervised multiview fuzzy clustering algorithm for relational data described by multiple dissimilarity matrices. SS-MVFCVSMdd provides a fuzzy partition in a predetermined number of fuzzy clusters, a representative for each fuzzy cluster, learns a relevance...
Uloženo v:
| Vydáno v: | IEEE International Fuzzy Systems conference proceedings s. 1 - 6 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
01.07.2017
|
| Témata: | |
| ISSN: | 1558-4739 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Thvs paper presents SS-MVFCVSMdd, a semi-supervised multiview fuzzy clustering algorithm for relational data described by multiple dissimilarity matrices. SS-MVFCVSMdd provides a fuzzy partition in a predetermined number of fuzzy clusters, a representative for each fuzzy cluster, learns a relevance weight for each dissimilarity matrix, and takes into account pairwise constraints must-link and cannot-link, by optimizing a suitable objective function. Experiments with multiview real-valued data sets described by multiple dissimilarity matrices show the usefulness of the proposed algorithm. |
|---|---|
| ISSN: | 1558-4739 |
| DOI: | 10.1109/FUZZ-IEEE.2017.8015529 |