Subjective similarity evaluation for scenic bilevel images

In order to provide ground truth for subjectively comparing compression methods for scenic bilevel images, as well as for judging objective similarity metrics, this paper describes the subjective similarity rating of a collection of distorted scenic bilevel images. Unlike text, line drawings, and si...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Proceedings of the ... IEEE International Conference on Acoustics, Speech and Signal Processing (1998) s. 156 - 160
Hlavní autoři: Yuanhao Zhai, Neuhoff, David L., Pappas, Thrasyvoulos N.
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.05.2014
Témata:
ISSN:1520-6149
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In order to provide ground truth for subjectively comparing compression methods for scenic bilevel images, as well as for judging objective similarity metrics, this paper describes the subjective similarity rating of a collection of distorted scenic bilevel images. Unlike text, line drawings, and silhouettes, scenic bilevel images contain natural scenes, e.g., landscapes and portraits. Seven scenic images were each distorted in forty-four ways, including random bit flipping, dilation, erosion and lossy compression. To produce subjective similarity ratings, the distorted images were each viewed by 77 subjects. These are then used to compare the performance of four compression algorithms and to assess how well percentage error and SmSIM work as bilevel image similarity metrics. These subjective ratings can also provide ground truth for future tests of objective bilevel image similarity metrics.
ISSN:1520-6149
DOI:10.1109/ICASSP.2014.6853577