Fuzzy Clustering Algorithms - Review of the Applications

Fuzzy clustering is an alternative method to conventional or hard clustering algorithms, which makes partitions of data containing similar subjects. The tendency of adopting machine learning, big data science, cloud computation in various industries depends on unsupervised learning on data structure...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:2016 IEEE International Conference on Smart Cloud (SmartCloud) s. 282 - 288
Hlavní autori: Jiamin Li, Lewis, Harold W.
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: IEEE 01.11.2016
Predmet:
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Fuzzy clustering is an alternative method to conventional or hard clustering algorithms, which makes partitions of data containing similar subjects. The tendency of adopting machine learning, big data science, cloud computation in various industries depends on unsupervised learning on data structures to tell the story about consumers' behavior, fraud detection, and market segmentation. Fuzzy clustering contrasts with hard clustering by its nonlinear nature and discipline of flexibility in grouping massive data. It provides more accurate and close-to-nature solutions for partitions and herein implies more possibility of solutions for decision-making. In the specific matter of computation, fuzzy clustering has its roots in fuzzy logic and indicates the likelihood or degrees of one data point belonging to more than one group. This paper focuses on the study of models of fuzzy clustering in various cases. Uniquely designed algorithms enhance the accuracy of outcomes and are worth studying to assist future work. In some case scenarios, modeling processes are data-driven and place emphasis on the distances between points and new centers of clusters. In some other cases, which aim at market segmentation or evaluation of patients by healthcare records, membership degree is a key element in the algorithm. This paper surveys a wide-range of research that has well-designed mathematic models for fuzzy clustering, some of which include genetic algorithms and neural networks. The last section introduces open sources of Python and displays sample results from hands-on practice with these packages.
AbstractList Fuzzy clustering is an alternative method to conventional or hard clustering algorithms, which makes partitions of data containing similar subjects. The tendency of adopting machine learning, big data science, cloud computation in various industries depends on unsupervised learning on data structures to tell the story about consumers' behavior, fraud detection, and market segmentation. Fuzzy clustering contrasts with hard clustering by its nonlinear nature and discipline of flexibility in grouping massive data. It provides more accurate and close-to-nature solutions for partitions and herein implies more possibility of solutions for decision-making. In the specific matter of computation, fuzzy clustering has its roots in fuzzy logic and indicates the likelihood or degrees of one data point belonging to more than one group. This paper focuses on the study of models of fuzzy clustering in various cases. Uniquely designed algorithms enhance the accuracy of outcomes and are worth studying to assist future work. In some case scenarios, modeling processes are data-driven and place emphasis on the distances between points and new centers of clusters. In some other cases, which aim at market segmentation or evaluation of patients by healthcare records, membership degree is a key element in the algorithm. This paper surveys a wide-range of research that has well-designed mathematic models for fuzzy clustering, some of which include genetic algorithms and neural networks. The last section introduces open sources of Python and displays sample results from hands-on practice with these packages.
Author Lewis, Harold W.
Jiamin Li
Author_xml – sequence: 1
  surname: Jiamin Li
  fullname: Jiamin Li
  email: jli272@binghamton.edu
  organization: Dept. of Syst. Sci. & Ind. Eng., State Univ. of New York at Binghamton, Binghamton, NY, USA
– sequence: 2
  givenname: Harold W.
  surname: Lewis
  fullname: Lewis, Harold W.
  email: hlewis@binghamton.edu
  organization: Dept. of Syst. Sci. & Ind. Eng., State Univ. of New York at Binghamton, Binghamton, NY, USA
BookMark eNotz09LwzAYgPEIenDTL6CXfIHWvEmaP8dSnAoDwc3zSOybLZC1pU2V7dMruNNz-8GzINdd3yEhD8BKAGafNkc35ib1c1tyBqoEeUUWUDHLKq4E3BKzms_nE23SPGUcY7enddr3Y8yH40QL-oHfEX9oH2g-IK2HIcUvl2PfTXfkJrg04f2lS_K5et42r8X6_eWtqddFBF3lAlWwrQevgbdMBmt9JbllCqQPWnGPQqI0nDmNzGjHvOBeKBWkBxGCArEkj_9uRMTdMMa_o9NOa6vAGPELEI9ELA
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/SmartCloud.2016.14
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1509052631
9781509052639
EndPage 288
ExternalDocumentID 7796188
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i175t-e6f9db1b712d04f99b54290614bf762be34e4820a7e087a0b32b366f4b13ff613
IEDL.DBID RIE
ISICitedReferencesCount 29
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000391560900044&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Thu Jun 29 18:38:29 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-e6f9db1b712d04f99b54290614bf762be34e4820a7e087a0b32b366f4b13ff613
PageCount 7
ParticipantIDs ieee_primary_7796188
PublicationCentury 2000
PublicationDate 2016-Nov.
PublicationDateYYYYMMDD 2016-11-01
PublicationDate_xml – month: 11
  year: 2016
  text: 2016-Nov.
PublicationDecade 2010
PublicationTitle 2016 IEEE International Conference on Smart Cloud (SmartCloud)
PublicationTitleAbbrev SMARTCLOUD
PublicationYear 2016
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8032525
Snippet Fuzzy clustering is an alternative method to conventional or hard clustering algorithms, which makes partitions of data containing similar subjects. The...
SourceID ieee
SourceType Publisher
StartPage 282
SubjectTerms Clustering algorithms
Data structures
Euclidean distance
fuzzy c-mean clustering
genetic algorithm
Genetic algorithms
Histograms
Indexes
Mathematical model
neural network
pattern recognition
validity index
Title Fuzzy Clustering Algorithms - Review of the Applications
URI https://ieeexplore.ieee.org/document/7796188
WOSCitedRecordID wos000391560900044&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09a8MwED2S0KFTW5LSbzR0rBLZFpY1BlPTKQTaQrZg2ac24NgliQvNr-_JTtMMXboJDSdOAj3dnd49gHuZZ0ZYLTnKLOWSAJcbgYobZd1HG09EqW3EJtRkEs1metqBhz0XBhGbz2c4dMOmlp9XWe1SZSOlnD5J1IWuUqrlav3wYIQePS9ps-Oiql0DUC8cOmLOgWJKAxjJyf-WOoXBL_OOTfeYcgYdLPsQJfV2-8XionZdDWiejYu3iqL69-Wacdam91llGT3m2PigIj2A1-TxJX7iO8UDviAY33AMrc6NZ5Tn50JarY2Tk3JBm7F0axkMJErC7FShiFQqTOCbIAytNF5gLSHzOfTKqsQLYPSsU760oQ7JkkEyFQlJZgIfHRcVL6HvvJ5_tE0t5juHr_6evoZjt6ctCe8GeptVjbdwlH1uFuvVXXMS305JjLk
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFH5BNNGTGjD-tgePFrqtruuRLBKMuJCICTeybq9KApsBZiJ_ve2GyMGLt6aH17w26df3Xr_3AdzyNFFMS06RJzHlBnCpYiioEtp-tHFYEOtSbEJEUTAayUEN7jZcGEQsP59hyw7LWn6aJ4VNlbWFsPokwQ7s3nPuOhVb64cJw2T7ZWa2O5zmhW0B6vgtS83Z0kwpIaN7-L_FjqD5y70jgw2qHEMNswYE3WK1-iLhtLB9Dcw86UzfchPXv88WhJIqwU9yTcxzjnS2atJNeO0-DMMeXWse0IkB8iVFX8tUOUo4bsq4llJZQSkbtilt7i2FHkduUDsWyAIRM-W5yvN9zZXjaW2w-QTqWZ7hKRDzsBMu1770jSWFxlTAuDHjuWjZqHgGDev1-KNqazFeO3z-9_QN7PeGz_1x_zF6uoADu78VJe8S6st5gVewl3wuJ4v5dXkq39E8kAA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2016+IEEE+International+Conference+on+Smart+Cloud+%28SmartCloud%29&rft.atitle=Fuzzy+Clustering+Algorithms+-+Review+of+the+Applications&rft.au=Jiamin+Li&rft.au=Lewis%2C+Harold+W.&rft.date=2016-11-01&rft.pub=IEEE&rft.spage=282&rft.epage=288&rft_id=info:doi/10.1109%2FSmartCloud.2016.14&rft.externalDocID=7796188