An Adaptive Multi-objective Immune Optimization Algorithm

It is difficult for traditional search methods to solve multi-objective optimization problems. Based on the idea of clonal selection principle, we present an adaptive multi-objective immune optimization algorithm (AMIOA) for function optimization problems and analyze its powerful performance from th...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:CASE 2009 : 2009 IITA International Conference on Control, Automation and Systems Engineering : proceedings, 11-12 July 2009, Zhangjiajie, China s. 140 - 143
Hlavní autor: Lu Hong
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.07.2009
Témata:
ISBN:0769537286, 9780769537283
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:It is difficult for traditional search methods to solve multi-objective optimization problems. Based on the idea of clonal selection principle, we present an adaptive multi-objective immune optimization algorithm (AMIOA) for function optimization problems and analyze its powerful performance from the immune system point of view. The main feature of the algorithm is the global search performance and the solution sets produced are highly competitive in terms of convergence, diversity and distribution. The comparative simulation results show that the proposed algorithm not only can obtain a set of solutions including the global optimum and multiple local optima, but also has much less computational cost than other algorithms.
ISBN:0769537286
9780769537283
DOI:10.1109/CASE.2009.133