Salient Object Detection: A Discriminative Regional Feature Integration Approach

Salient object detection has been attracting a lot of interest, and recently various heuristic computational models have been designed. In this paper, we regard saliency map computation as a regression problem. Our method, which is based on multi-level image segmentation, uses the supervised learnin...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:2013 IEEE Conference on Computer Vision and Pattern Recognition s. 2083 - 2090
Hlavní autori: Huaizu Jiang, Jingdong Wang, Zejian Yuan, Yang Wu, Nanning Zheng, Shipeng Li
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: IEEE 01.06.2013
Predmet:
ISSN:1063-6919, 1063-6919
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Salient object detection has been attracting a lot of interest, and recently various heuristic computational models have been designed. In this paper, we regard saliency map computation as a regression problem. Our method, which is based on multi-level image segmentation, uses the supervised learning approach to map the regional feature vector to a saliency score, and finally fuses the saliency scores across multiple levels, yielding the saliency map. The contributions lie in two-fold. One is that we show our approach, which integrates the regional contrast, regional property and regional background ness descriptors together to form the master saliency map, is able to produce superior saliency maps to existing algorithms most of which combine saliency maps heuristically computed from different types of features. The other is that we introduce a new regional feature vector, background ness, to characterize the background, which can be regarded as a counterpart of the objectness descriptor [2]. The performance evaluation on several popular benchmark data sets validates that our approach outperforms existing state-of-the-arts.
AbstractList Salient object detection has been attracting a lot of interest, and recently various heuristic computational models have been designed. In this paper, we regard saliency map computation as a regression problem. Our method, which is based on multi-level image segmentation, uses the supervised learning approach to map the regional feature vector to a saliency score, and finally fuses the saliency scores across multiple levels, yielding the saliency map. The contributions lie in two-fold. One is that we show our approach, which integrates the regional contrast, regional property and regional background ness descriptors together to form the master saliency map, is able to produce superior saliency maps to existing algorithms most of which combine saliency maps heuristically computed from different types of features. The other is that we introduce a new regional feature vector, background ness, to characterize the background, which can be regarded as a counterpart of the objectness descriptor [2]. The performance evaluation on several popular benchmark data sets validates that our approach outperforms existing state-of-the-arts.
Author Huaizu Jiang
Zejian Yuan
Yang Wu
Shipeng Li
Nanning Zheng
Jingdong Wang
Author_xml – sequence: 1
  surname: Huaizu Jiang
  fullname: Huaizu Jiang
– sequence: 2
  surname: Jingdong Wang
  fullname: Jingdong Wang
– sequence: 3
  surname: Zejian Yuan
  fullname: Zejian Yuan
– sequence: 4
  surname: Yang Wu
  fullname: Yang Wu
– sequence: 5
  surname: Nanning Zheng
  fullname: Nanning Zheng
– sequence: 6
  surname: Shipeng Li
  fullname: Shipeng Li
BookMark eNpNkE1Lw0AYhFepYFt79ORl_0Divrvul7fQDy0UWurHtewmb-qWmIRkFfz3RvTgaQbmYRhmQkZ1UyMh18BSAGZv56-7fcoZiJRrOCMzqw1IYZRUmotzMgamRKIs2NE_f0kmfX9ijAvN2ZjsnlwVsI5060-YR7rAOEho6nua0UXo8y68h9rF8Il0j8chcBVdoYsfHdJ1HfHYuR-cZm3bNS5_uyIXpat6nP3plLysls_zx2SzfVjPs00SQMuYoETnNUqT56XBUus7IQoFxpdSoWbgmTTCScm418JpWwjPmfIl-LIwONBTcvPbGxDx0A4zXfd1UAosDCd8A7pAUmw
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/CVPR.2013.271
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISBN 9781538656723
1538656728
EISSN 1063-6919
EndPage 2090
ExternalDocumentID 6619115
Genre orig-research
GroupedDBID 23M
29F
29O
6IE
6IH
6IK
ABDPE
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CBEJK
IPLJI
M43
RIE
RIO
RNS
ID FETCH-LOGICAL-i175t-e5eab7e58ccf8ef77433d618bf56e701b0583a5502b73a79d3b206bf1bfd8e743
IEDL.DBID RIE
ISICitedReferencesCount 943
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000331094302019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1063-6919
IngestDate Wed Aug 27 02:59:40 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-e5eab7e58ccf8ef77433d618bf56e701b0583a5502b73a79d3b206bf1bfd8e743
PageCount 8
ParticipantIDs ieee_primary_6619115
PublicationCentury 2000
PublicationDate 2013-June
PublicationDateYYYYMMDD 2013-06-01
PublicationDate_xml – month: 06
  year: 2013
  text: 2013-June
PublicationDecade 2010
PublicationTitle 2013 IEEE Conference on Computer Vision and Pattern Recognition
PublicationTitleAbbrev CVPR
PublicationYear 2013
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0023720
ssj0003211698
Score 2.4996276
Snippet Salient object detection has been attracting a lot of interest, and recently various heuristic computational models have been designed. In this paper, we...
SourceID ieee
SourceType Publisher
StartPage 2083
SubjectTerms Feature extraction
Histograms
Image color analysis
Image segmentation
Object detection
Training
Vectors
Title Salient Object Detection: A Discriminative Regional Feature Integration Approach
URI https://ieeexplore.ieee.org/document/6619115
WOSCitedRecordID wos000331094302019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFG6AePCECsbf6cGjg62l7eqNgEQTgwsq4UbW7tVwGWYM_37bMsbFi7flZVmWNu373o_vewjdi4yTVDAbqRqXrcokCZQhUUBMDFxZQG88F2b-KqbTeLGQSQM91FwYAPDNZ9Bzj76Wn6311qXK-taX2LPJmqgpBN9xtep8CrWRDJd1BYG46Su-0slpwGUkD_qa_dE8mbmmLtojnjl_mKrincqk_b_fOUHdAzsPJ7XfOUUNyM9Qu4KTuDqsG2vaT2zY2zooebew234UvymXf8FjKH0rVv6Ih3i8cleIa41xVyCewZdPE2KHErcF4JdKWcJa8bCSIu-iz8nTx-g5qGYqBCsLFMoAGKRKAIu1trthLPijNONRrAzjIMJIhSymqQ1biBI0FTKjioRcmUiZLAb79jlq5escLhBWRGgDRumYiQHXXA5S5qR_HMTSWslL1HFrtvzeyWYsq-W6-tt8jY7JbtJEEEY3qFUWW7hFR_qnXG2KO7_Xv5afqBA
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFG4QTfSECsbf9uDRAWtZu3ojIIGIuCASbmTtXg2XYWD499uWMS5evC0vy7K0ad_3fn0fQo88YSTmgYlUtc1WJYJ4UhPfIzoEJg2g124WZjrko1E4m4mohJ6KWRgAcM1nULePrpafLNXGpsoaxpeYsxkcoEOrnJVPaxUZFWpiGSaKGgKx-iuu1smox4Qv9gybjc40Gtu2LlonbnZ-r6vi3Eqv8r8fOkW1_XwejgrPc4ZKkJ6jSg4ocX5c18a002zY2aoo-jDA23wUv0ubgcFdyFwzVvqM27i7sJeIbY6xlyAew5dLFGKLEzcrwIOcW8JYcTsnI6-hz97LpNP3clUFb2GgQuZBALHkEIRKmf3QBv5RmjA_lDpgwJu-bAYhjU3gQiSnMRcJlaTJpPalTkIwb1-gcrpM4RJhSbjSoKUKA95iiolWHFjyHwuylJLiClXtms2_t8QZ83y5rv82P6Dj_uRtOB8ORq836IRsdSe8pn-LytlqA3foSP1ki_Xq3u37L4gnq1k
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2013+IEEE+Conference+on+Computer+Vision+and+Pattern+Recognition&rft.atitle=Salient+Object+Detection%3A+A+Discriminative+Regional+Feature+Integration+Approach&rft.au=Huaizu+Jiang&rft.au=Jingdong+Wang&rft.au=Zejian+Yuan&rft.au=Yang+Wu&rft.date=2013-06-01&rft.pub=IEEE&rft.issn=1063-6919&rft.eissn=1063-6919&rft.spage=2083&rft.epage=2090&rft_id=info:doi/10.1109%2FCVPR.2013.271&rft.externalDocID=6619115
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6919&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6919&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6919&client=summon