Salient Object Detection: A Discriminative Regional Feature Integration Approach
Salient object detection has been attracting a lot of interest, and recently various heuristic computational models have been designed. In this paper, we regard saliency map computation as a regression problem. Our method, which is based on multi-level image segmentation, uses the supervised learnin...
Uložené v:
| Vydané v: | 2013 IEEE Conference on Computer Vision and Pattern Recognition s. 2083 - 2090 |
|---|---|
| Hlavní autori: | , , , , , |
| Médium: | Konferenčný príspevok.. |
| Jazyk: | English |
| Vydavateľské údaje: |
IEEE
01.06.2013
|
| Predmet: | |
| ISSN: | 1063-6919, 1063-6919 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Salient object detection has been attracting a lot of interest, and recently various heuristic computational models have been designed. In this paper, we regard saliency map computation as a regression problem. Our method, which is based on multi-level image segmentation, uses the supervised learning approach to map the regional feature vector to a saliency score, and finally fuses the saliency scores across multiple levels, yielding the saliency map. The contributions lie in two-fold. One is that we show our approach, which integrates the regional contrast, regional property and regional background ness descriptors together to form the master saliency map, is able to produce superior saliency maps to existing algorithms most of which combine saliency maps heuristically computed from different types of features. The other is that we introduce a new regional feature vector, background ness, to characterize the background, which can be regarded as a counterpart of the objectness descriptor [2]. The performance evaluation on several popular benchmark data sets validates that our approach outperforms existing state-of-the-arts. |
|---|---|
| AbstractList | Salient object detection has been attracting a lot of interest, and recently various heuristic computational models have been designed. In this paper, we regard saliency map computation as a regression problem. Our method, which is based on multi-level image segmentation, uses the supervised learning approach to map the regional feature vector to a saliency score, and finally fuses the saliency scores across multiple levels, yielding the saliency map. The contributions lie in two-fold. One is that we show our approach, which integrates the regional contrast, regional property and regional background ness descriptors together to form the master saliency map, is able to produce superior saliency maps to existing algorithms most of which combine saliency maps heuristically computed from different types of features. The other is that we introduce a new regional feature vector, background ness, to characterize the background, which can be regarded as a counterpart of the objectness descriptor [2]. The performance evaluation on several popular benchmark data sets validates that our approach outperforms existing state-of-the-arts. |
| Author | Huaizu Jiang Zejian Yuan Yang Wu Shipeng Li Nanning Zheng Jingdong Wang |
| Author_xml | – sequence: 1 surname: Huaizu Jiang fullname: Huaizu Jiang – sequence: 2 surname: Jingdong Wang fullname: Jingdong Wang – sequence: 3 surname: Zejian Yuan fullname: Zejian Yuan – sequence: 4 surname: Yang Wu fullname: Yang Wu – sequence: 5 surname: Nanning Zheng fullname: Nanning Zheng – sequence: 6 surname: Shipeng Li fullname: Shipeng Li |
| BookMark | eNpNkE1Lw0AYhFepYFt79ORl_0Divrvul7fQDy0UWurHtewmb-qWmIRkFfz3RvTgaQbmYRhmQkZ1UyMh18BSAGZv56-7fcoZiJRrOCMzqw1IYZRUmotzMgamRKIs2NE_f0kmfX9ijAvN2ZjsnlwVsI5060-YR7rAOEho6nua0UXo8y68h9rF8Il0j8chcBVdoYsfHdJ1HfHYuR-cZm3bNS5_uyIXpat6nP3plLysls_zx2SzfVjPs00SQMuYoETnNUqT56XBUus7IQoFxpdSoWbgmTTCScm418JpWwjPmfIl-LIwONBTcvPbGxDx0A4zXfd1UAosDCd8A7pAUmw |
| CODEN | IEEPAD |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IH CBEJK RIE RIO |
| DOI | 10.1109/CVPR.2013.271 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Computer Science |
| EISBN | 9781538656723 1538656728 |
| EISSN | 1063-6919 |
| EndPage | 2090 |
| ExternalDocumentID | 6619115 |
| Genre | orig-research |
| GroupedDBID | 23M 29F 29O 6IE 6IH 6IK ABDPE ACGFS ALMA_UNASSIGNED_HOLDINGS CBEJK IPLJI M43 RIE RIO RNS |
| ID | FETCH-LOGICAL-i175t-e5eab7e58ccf8ef77433d618bf56e701b0583a5502b73a79d3b206bf1bfd8e743 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 943 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000331094302019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1063-6919 |
| IngestDate | Wed Aug 27 02:59:40 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i175t-e5eab7e58ccf8ef77433d618bf56e701b0583a5502b73a79d3b206bf1bfd8e743 |
| PageCount | 8 |
| ParticipantIDs | ieee_primary_6619115 |
| PublicationCentury | 2000 |
| PublicationDate | 2013-June |
| PublicationDateYYYYMMDD | 2013-06-01 |
| PublicationDate_xml | – month: 06 year: 2013 text: 2013-June |
| PublicationDecade | 2010 |
| PublicationTitle | 2013 IEEE Conference on Computer Vision and Pattern Recognition |
| PublicationTitleAbbrev | CVPR |
| PublicationYear | 2013 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0023720 ssj0003211698 |
| Score | 2.4996276 |
| Snippet | Salient object detection has been attracting a lot of interest, and recently various heuristic computational models have been designed. In this paper, we... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 2083 |
| SubjectTerms | Feature extraction Histograms Image color analysis Image segmentation Object detection Training Vectors |
| Title | Salient Object Detection: A Discriminative Regional Feature Integration Approach |
| URI | https://ieeexplore.ieee.org/document/6619115 |
| WOSCitedRecordID | wos000331094302019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFG6AePCECsbf6cGjg62l7eqNgEQTgwsq4UbW7tVwGWYM_37bMsbFi7flZVmWNu373o_vewjdi4yTVDAbqRqXrcokCZQhUUBMDFxZQG88F2b-KqbTeLGQSQM91FwYAPDNZ9Bzj76Wn6311qXK-taX2LPJmqgpBN9xtep8CrWRDJd1BYG46Su-0slpwGUkD_qa_dE8mbmmLtojnjl_mKrincqk_b_fOUHdAzsPJ7XfOUUNyM9Qu4KTuDqsG2vaT2zY2zooebew234UvymXf8FjKH0rVv6Ih3i8cleIa41xVyCewZdPE2KHErcF4JdKWcJa8bCSIu-iz8nTx-g5qGYqBCsLFMoAGKRKAIu1trthLPijNONRrAzjIMJIhSymqQ1biBI0FTKjioRcmUiZLAb79jlq5escLhBWRGgDRumYiQHXXA5S5qR_HMTSWslL1HFrtvzeyWYsq-W6-tt8jY7JbtJEEEY3qFUWW7hFR_qnXG2KO7_Xv5afqBA |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFG4QTfSECsbf9uDRAWtZu3ojIIGIuCASbmTtXg2XYWD499uWMS5evC0vy7K0ad_3fn0fQo88YSTmgYlUtc1WJYJ4UhPfIzoEJg2g124WZjrko1E4m4mohJ6KWRgAcM1nULePrpafLNXGpsoaxpeYsxkcoEOrnJVPaxUZFWpiGSaKGgKx-iuu1smox4Qv9gybjc40Gtu2LlonbnZ-r6vi3Eqv8r8fOkW1_XwejgrPc4ZKkJ6jSg4ocX5c18a002zY2aoo-jDA23wUv0ubgcFdyFwzVvqM27i7sJeIbY6xlyAew5dLFGKLEzcrwIOcW8JYcTsnI6-hz97LpNP3clUFb2GgQuZBALHkEIRKmf3QBv5RmjA_lDpgwJu-bAYhjU3gQiSnMRcJlaTJpPalTkIwb1-gcrpM4RJhSbjSoKUKA95iiolWHFjyHwuylJLiClXtms2_t8QZ83y5rv82P6Dj_uRtOB8ORq836IRsdSe8pn-LytlqA3foSP1ki_Xq3u37L4gnq1k |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2013+IEEE+Conference+on+Computer+Vision+and+Pattern+Recognition&rft.atitle=Salient+Object+Detection%3A+A+Discriminative+Regional+Feature+Integration+Approach&rft.au=Huaizu+Jiang&rft.au=Jingdong+Wang&rft.au=Zejian+Yuan&rft.au=Yang+Wu&rft.date=2013-06-01&rft.pub=IEEE&rft.issn=1063-6919&rft.eissn=1063-6919&rft.spage=2083&rft.epage=2090&rft_id=info:doi/10.1109%2FCVPR.2013.271&rft.externalDocID=6619115 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6919&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6919&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6919&client=summon |