Change detection with unknown post-change parameter using Kiefer-Wolfowitz method
We consider a change detection problem with an unknown post-change parameter. The optimal algorithm in minimizing worst case detection delay subject to a constraint on average run length, referred as parallel CUSUM, is computationally expensive. We propose a low complexity algorithm based on paramet...
Uloženo v:
| Vydáno v: | Proceedings of the ... IEEE International Conference on Acoustics, Speech and Signal Processing (1998) s. 3919 - 3923 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
01.03.2017
|
| Témata: | |
| ISSN: | 2379-190X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We consider a change detection problem with an unknown post-change parameter. The optimal algorithm in minimizing worst case detection delay subject to a constraint on average run length, referred as parallel CUSUM, is computationally expensive. We propose a low complexity algorithm based on parameter estimation using Kiefer-Wolfowitz (KW) method with CUSUM based change detection. We also consider a variant of KW method where the tuning sequences of KW method are reset periodically. We study the performance under the Gaussian mean change model. Our results show that reset KW-CUSUM performs close to the parallel CUSUM in terms of worst case delay versus average run length. Non-reset KW-CUSUM algorithm has smaller probability of false alarm compared to the existing algorithms, when run over a finite duration. |
|---|---|
| ISSN: | 2379-190X |
| DOI: | 10.1109/ICASSP.2017.7952891 |