Comparative Analysis of KNN, SVM, DT for EOG based Human Computer Interface
In this study, EOG signal based human computer interface (HCI) has been implemented. This is a communication system that permits interaction with computer using eye movement. The necessary steps of implementation of HCI are EOG signal acquisition and analysis, feature extraction and classification....
Gespeichert in:
| Veröffentlicht in: | 2017 International Conference on Current Trends in Computer, Electrical, Electronics and Communication (CTCEEC) S. 1023 - 1028 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Tagungsbericht |
| Sprache: | Englisch |
| Veröffentlicht: |
IEEE
01.09.2017
|
| Schlagworte: | |
| ISBN: | 153863242X, 9781538632420 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | In this study, EOG signal based human computer interface (HCI) has been implemented. This is a communication system that permits interaction with computer using eye movement. The necessary steps of implementation of HCI are EOG signal acquisition and analysis, feature extraction and classification. EOG signal has been acquired by placing electrodes at left and right corner of eye from 12 subjects. Dual Tree Complex Wavelet Transform (DTCWT) has been employed to denoise the EOG signal and 16 features are extracted from the time domain. Three classifiers (Decision Tree (DT), k-Nearest Neighbor (KNN) algorithm, and Support Vector Machines (SVM)) have been used to identify the horizontal eye movement i.e. left and right. Analysis and comparison of their performance is made on the basis of confusion matrix, receiver operating characteristics (ROC) and performance indices i.e. sensitivity, specificity, precision, accuracy and F1 score to evaluate the most efficient classifier for their classification task. According to classification results, out of three classifiers, KNN is the best classifier for horizontal EOG signal and has shown almost 100 percent accuracy. |
|---|---|
| AbstractList | In this study, EOG signal based human computer interface (HCI) has been implemented. This is a communication system that permits interaction with computer using eye movement. The necessary steps of implementation of HCI are EOG signal acquisition and analysis, feature extraction and classification. EOG signal has been acquired by placing electrodes at left and right corner of eye from 12 subjects. Dual Tree Complex Wavelet Transform (DTCWT) has been employed to denoise the EOG signal and 16 features are extracted from the time domain. Three classifiers (Decision Tree (DT), k-Nearest Neighbor (KNN) algorithm, and Support Vector Machines (SVM)) have been used to identify the horizontal eye movement i.e. left and right. Analysis and comparison of their performance is made on the basis of confusion matrix, receiver operating characteristics (ROC) and performance indices i.e. sensitivity, specificity, precision, accuracy and F1 score to evaluate the most efficient classifier for their classification task. According to classification results, out of three classifiers, KNN is the best classifier for horizontal EOG signal and has shown almost 100 percent accuracy. |
| Author | Kumari, Preeti Syal, Poonam Babita |
| Author_xml | – sequence: 1 surname: Babita fullname: Babita organization: Electrical Engineering Department, NITTTR, Chandigarh – sequence: 2 givenname: Poonam surname: Syal fullname: Syal, Poonam organization: Electrical Engineering Department, NITTTR, Chandigarh – sequence: 3 givenname: Preeti surname: Kumari fullname: Kumari, Preeti organization: Electrical Engineering Department, NITTTR, Chandigarh |
| BookMark | eNo1j9tKw0AYhFdU0NY8QW_2AZq4h-zpsqzpgdb2wijelU3yL0SapGRToW9vxXozw8A3AzNCd23XAkITShJKiXm2uc0ymzBCVaJTIShjNygySlPBteQs5eoWjf4D-3xAUQhfhBAmdaq5fERr2zVH17uh_gY8a93hHOqAO4_X2-0Uv328TvFLjn3X42y3wIULUOHlqXEt_i2eBujxqr2odyU8oXvvDgGiq4_R-zzL7TLe7BYrO9vENVViiIGmJTWVSY0pmHOqUKzglZLcc0acV8YLrxUUQpdcVlpIyYkESTwztIILNUaTv90aAPbHvm5cf95f__MfrXpOZA |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/CTCEEC.2017.8455122 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 9781538632437 1538632438 9781538632406 1538632403 |
| EndPage | 1028 |
| ExternalDocumentID | 8455122 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IF 6IL 6IN AAJGR AAWTH ABLEC ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK IEGSK OCL RIE RIL |
| ID | FETCH-LOGICAL-i175t-e14c19d9499b2aa7b72b3d763f320af79f5f87eb58c36d8566306e60f291de3f3 |
| IEDL.DBID | RIE |
| ISBN | 153863242X 9781538632420 |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000454738900186&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Aug 27 02:56:13 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i175t-e14c19d9499b2aa7b72b3d763f320af79f5f87eb58c36d8566306e60f291de3f3 |
| PageCount | 6 |
| ParticipantIDs | ieee_primary_8455122 |
| PublicationCentury | 2000 |
| PublicationDate | 2017-Sept. |
| PublicationDateYYYYMMDD | 2017-09-01 |
| PublicationDate_xml | – month: 09 year: 2017 text: 2017-Sept. |
| PublicationDecade | 2010 |
| PublicationTitle | 2017 International Conference on Current Trends in Computer, Electrical, Electronics and Communication (CTCEEC) |
| PublicationTitleAbbrev | CTCEEC |
| PublicationYear | 2017 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0002684836 |
| Score | 1.678074 |
| Snippet | In this study, EOG signal based human computer interface (HCI) has been implemented. This is a communication system that permits interaction with computer... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1023 |
| SubjectTerms | Decision Tree Discrete wavelet transforms Dual tree complex wavelet transform Electrooculography Feature extraction K-Nearest Neighbour algorithm Support Vector Machine Support vector machines |
| Title | Comparative Analysis of KNN, SVM, DT for EOG based Human Computer Interface |
| URI | https://ieeexplore.ieee.org/document/8455122 |
| WOSCitedRecordID | wos000454738900186&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3PT8IwFMcbJB48qQHj7_TgkUHXdmt7nkMTdJKIhBvp1teECxgE_37bMkZMvHjblmVZXrN-33t77_MQeoBExawkKpKGcx-g8Eh7Aq20iXFqH1sTCHzTF1EUcjZT4xbqNb0wABCKz6DvD8O_fLOqtj5VNpDc6Tt1G-6REOmuV6vJp3hqiWSp791y37CHkNMasNOck5o6FBM1yCZZnme-tEv068f-mq8S5GV4-r8XO0PdQ58eHjcKdI5asOygUXYAeuM9cwSvLB4VRQ-_T197-HGCna-K87cn7FXM4JDKx_sJDzikCa2uoIs-hvkke47qkQnRwvkBmwhiXsXKeOJMSbUWpaAlM24PsYwSbYWyiZUCykRWLDXS-XIuZICUWKpiA-6uC9RerpZwiTCviIBUUA0ucNWMqcRoQSpuBCdaE3mFOt4Q888dFWNe2-D678s36MTbeleddYvam_UW7tBx9b1ZfK3vw1L-AHZomCQ |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3fT8IwEMcbgib6pAaMv-2Djwy6rlvb5znEAJPESXgj3XpNeAGD4N9vO8aIiS--bcuyLNes37vb3ecQeoJQ-kFOpCc0Yy5AYZ5yBFphQm3V3je6JPBNRzxNxWwmJw3UqXthAKAsPoOuOyz_5etVsXWpsp5gVt-p3XCPQsYo2XVr1RkVxy0RQeS6t-xX7DDktELs1Oek4g75RPbiLE6S2BV38W714F8TVkqB6Z_979XOUfvQqYcntQZdoAYsW2gYH5DeeE8dwSuDh2nawe_TcQc_Z9h6qzh5e8FOxzQuk_l4P-MBl4lCowpoo49-ksUDrxqa4C2sJ7DxwGeFL7VjzuRUKZ5zmgfa7iImoEQZLk1oBIc8FEUQaWG9ORs0QEQMlb4Ge9clai5XS7hCmBWEQ8SpAhu6qiCQoVacFExzRpQi4hq1nCHmnzsuxryywc3flx_RySAbj-aj13R4i06d3Xe1WneouVlv4R4dF9-bxdf6oVzWH5fHm2s |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2017+International+Conference+on+Current+Trends+in+Computer%2C+Electrical%2C+Electronics+and+Communication+%28CTCEEC%29&rft.atitle=Comparative+Analysis+of+KNN%2C+SVM%2C+DT+for+EOG+based+Human+Computer+Interface&rft.au=Babita&rft.au=Syal%2C+Poonam&rft.au=Kumari%2C+Preeti&rft.date=2017-09-01&rft.pub=IEEE&rft.isbn=9781538632420&rft.spage=1023&rft.epage=1028&rft_id=info:doi/10.1109%2FCTCEEC.2017.8455122&rft.externalDocID=8455122 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781538632420/lc.gif&client=summon&freeimage=true |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781538632420/mc.gif&client=summon&freeimage=true |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781538632420/sc.gif&client=summon&freeimage=true |

