Comparative Analysis of KNN, SVM, DT for EOG based Human Computer Interface

In this study, EOG signal based human computer interface (HCI) has been implemented. This is a communication system that permits interaction with computer using eye movement. The necessary steps of implementation of HCI are EOG signal acquisition and analysis, feature extraction and classification....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2017 International Conference on Current Trends in Computer, Electrical, Electronics and Communication (CTCEEC) S. 1023 - 1028
Hauptverfasser: Babita, Syal, Poonam, Kumari, Preeti
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 01.09.2017
Schlagworte:
ISBN:153863242X, 9781538632420
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In this study, EOG signal based human computer interface (HCI) has been implemented. This is a communication system that permits interaction with computer using eye movement. The necessary steps of implementation of HCI are EOG signal acquisition and analysis, feature extraction and classification. EOG signal has been acquired by placing electrodes at left and right corner of eye from 12 subjects. Dual Tree Complex Wavelet Transform (DTCWT) has been employed to denoise the EOG signal and 16 features are extracted from the time domain. Three classifiers (Decision Tree (DT), k-Nearest Neighbor (KNN) algorithm, and Support Vector Machines (SVM)) have been used to identify the horizontal eye movement i.e. left and right. Analysis and comparison of their performance is made on the basis of confusion matrix, receiver operating characteristics (ROC) and performance indices i.e. sensitivity, specificity, precision, accuracy and F1 score to evaluate the most efficient classifier for their classification task. According to classification results, out of three classifiers, KNN is the best classifier for horizontal EOG signal and has shown almost 100 percent accuracy.
AbstractList In this study, EOG signal based human computer interface (HCI) has been implemented. This is a communication system that permits interaction with computer using eye movement. The necessary steps of implementation of HCI are EOG signal acquisition and analysis, feature extraction and classification. EOG signal has been acquired by placing electrodes at left and right corner of eye from 12 subjects. Dual Tree Complex Wavelet Transform (DTCWT) has been employed to denoise the EOG signal and 16 features are extracted from the time domain. Three classifiers (Decision Tree (DT), k-Nearest Neighbor (KNN) algorithm, and Support Vector Machines (SVM)) have been used to identify the horizontal eye movement i.e. left and right. Analysis and comparison of their performance is made on the basis of confusion matrix, receiver operating characteristics (ROC) and performance indices i.e. sensitivity, specificity, precision, accuracy and F1 score to evaluate the most efficient classifier for their classification task. According to classification results, out of three classifiers, KNN is the best classifier for horizontal EOG signal and has shown almost 100 percent accuracy.
Author Kumari, Preeti
Syal, Poonam
Babita
Author_xml – sequence: 1
  surname: Babita
  fullname: Babita
  organization: Electrical Engineering Department, NITTTR, Chandigarh
– sequence: 2
  givenname: Poonam
  surname: Syal
  fullname: Syal, Poonam
  organization: Electrical Engineering Department, NITTTR, Chandigarh
– sequence: 3
  givenname: Preeti
  surname: Kumari
  fullname: Kumari, Preeti
  organization: Electrical Engineering Department, NITTTR, Chandigarh
BookMark eNo1j9tKw0AYhFdU0NY8QW_2AZq4h-zpsqzpgdb2wijelU3yL0SapGRToW9vxXozw8A3AzNCd23XAkITShJKiXm2uc0ymzBCVaJTIShjNygySlPBteQs5eoWjf4D-3xAUQhfhBAmdaq5fERr2zVH17uh_gY8a93hHOqAO4_X2-0Uv328TvFLjn3X42y3wIULUOHlqXEt_i2eBujxqr2odyU8oXvvDgGiq4_R-zzL7TLe7BYrO9vENVViiIGmJTWVSY0pmHOqUKzglZLcc0acV8YLrxUUQpdcVlpIyYkESTwztIILNUaTv90aAPbHvm5cf95f__MfrXpOZA
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/CTCEEC.2017.8455122
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781538632437
1538632438
9781538632406
1538632403
EndPage 1028
ExternalDocumentID 8455122
Genre orig-research
GroupedDBID 6IE
6IF
6IL
6IN
AAJGR
AAWTH
ABLEC
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
IEGSK
OCL
RIE
RIL
ID FETCH-LOGICAL-i175t-e14c19d9499b2aa7b72b3d763f320af79f5f87eb58c36d8566306e60f291de3f3
IEDL.DBID RIE
ISBN 153863242X
9781538632420
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000454738900186&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:56:13 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-e14c19d9499b2aa7b72b3d763f320af79f5f87eb58c36d8566306e60f291de3f3
PageCount 6
ParticipantIDs ieee_primary_8455122
PublicationCentury 2000
PublicationDate 2017-Sept.
PublicationDateYYYYMMDD 2017-09-01
PublicationDate_xml – month: 09
  year: 2017
  text: 2017-Sept.
PublicationDecade 2010
PublicationTitle 2017 International Conference on Current Trends in Computer, Electrical, Electronics and Communication (CTCEEC)
PublicationTitleAbbrev CTCEEC
PublicationYear 2017
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0002684836
Score 1.678074
Snippet In this study, EOG signal based human computer interface (HCI) has been implemented. This is a communication system that permits interaction with computer...
SourceID ieee
SourceType Publisher
StartPage 1023
SubjectTerms Decision Tree
Discrete wavelet transforms
Dual tree complex wavelet transform
Electrooculography
Feature extraction
K-Nearest Neighbour algorithm
Support Vector Machine
Support vector machines
Title Comparative Analysis of KNN, SVM, DT for EOG based Human Computer Interface
URI https://ieeexplore.ieee.org/document/8455122
WOSCitedRecordID wos000454738900186&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3PT8IwFMcbJB48qQHj7_TgkUHXdmt7nkMTdJKIhBvp1teECxgE_37bMkZMvHjblmVZXrN-33t77_MQeoBExawkKpKGcx-g8Eh7Aq20iXFqH1sTCHzTF1EUcjZT4xbqNb0wABCKz6DvD8O_fLOqtj5VNpDc6Tt1G-6REOmuV6vJp3hqiWSp791y37CHkNMasNOck5o6FBM1yCZZnme-tEv068f-mq8S5GV4-r8XO0PdQ58eHjcKdI5asOygUXYAeuM9cwSvLB4VRQ-_T197-HGCna-K87cn7FXM4JDKx_sJDzikCa2uoIs-hvkke47qkQnRwvkBmwhiXsXKeOJMSbUWpaAlM24PsYwSbYWyiZUCykRWLDXS-XIuZICUWKpiA-6uC9RerpZwiTCviIBUUA0ucNWMqcRoQSpuBCdaE3mFOt4Q888dFWNe2-D678s36MTbeleddYvam_UW7tBx9b1ZfK3vw1L-AHZomCQ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3fT8IwEMcbgib6pAaMv-2Djwy6rlvb5znEAJPESXgj3XpNeAGD4N9vO8aIiS--bcuyLNes37vb3ecQeoJQ-kFOpCc0Yy5AYZ5yBFphQm3V3je6JPBNRzxNxWwmJw3UqXthAKAsPoOuOyz_5etVsXWpsp5gVt-p3XCPQsYo2XVr1RkVxy0RQeS6t-xX7DDktELs1Oek4g75RPbiLE6S2BV38W714F8TVkqB6Z_979XOUfvQqYcntQZdoAYsW2gYH5DeeE8dwSuDh2nawe_TcQc_Z9h6qzh5e8FOxzQuk_l4P-MBl4lCowpoo49-ksUDrxqa4C2sJ7DxwGeFL7VjzuRUKZ5zmgfa7iImoEQZLk1oBIc8FEUQaWG9ORs0QEQMlb4Ge9clai5XS7hCmBWEQ8SpAhu6qiCQoVacFExzRpQi4hq1nCHmnzsuxryywc3flx_RySAbj-aj13R4i06d3Xe1WneouVlv4R4dF9-bxdf6oVzWH5fHm2s
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2017+International+Conference+on+Current+Trends+in+Computer%2C+Electrical%2C+Electronics+and+Communication+%28CTCEEC%29&rft.atitle=Comparative+Analysis+of+KNN%2C+SVM%2C+DT+for+EOG+based+Human+Computer+Interface&rft.au=Babita&rft.au=Syal%2C+Poonam&rft.au=Kumari%2C+Preeti&rft.date=2017-09-01&rft.pub=IEEE&rft.isbn=9781538632420&rft.spage=1023&rft.epage=1028&rft_id=info:doi/10.1109%2FCTCEEC.2017.8455122&rft.externalDocID=8455122
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781538632420/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781538632420/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781538632420/sc.gif&client=summon&freeimage=true