A detection approach for solitary pulmonary nodules based on CT images

It has been indicated that detection of pulmonary nodules plays an important role in diagnosing lung cancer in early-stage. In this paper, we propose an algorithm for detecting solitary pulmonary nodules automatically. Firstly, the algorithm implements prepared processing on original CT images and a...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2012 2nd International Conference on Computer Science and Network Technology s. 1253 - 1257
Hlavní autoři: Shao, Hong, Cao, Li, Liu, Yang
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.12.2012
Témata:
ISBN:1467329630, 9781467329637
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract It has been indicated that detection of pulmonary nodules plays an important role in diagnosing lung cancer in early-stage. In this paper, we propose an algorithm for detecting solitary pulmonary nodules automatically. Firstly, the algorithm implements prepared processing on original CT images and adopts adaptive iteration threshold twice to complete pulmonary parenchyma segmentation. Secondly, the experiment combines histogram analysis with compactness feature to obtain candidate nodules, and then achieves feature extraction for ROIs. Finally, SVM classifier is constructed on the basis of the extracted features to recognize true nodules and label them on original images. Experimental results indicate that our algorithm can not only achieve high accuracy and specificity but also can reduce the misdiagnosis, which is able to supply reference information with the radiologist detecting pulmonary nodules.
AbstractList It has been indicated that detection of pulmonary nodules plays an important role in diagnosing lung cancer in early-stage. In this paper, we propose an algorithm for detecting solitary pulmonary nodules automatically. Firstly, the algorithm implements prepared processing on original CT images and adopts adaptive iteration threshold twice to complete pulmonary parenchyma segmentation. Secondly, the experiment combines histogram analysis with compactness feature to obtain candidate nodules, and then achieves feature extraction for ROIs. Finally, SVM classifier is constructed on the basis of the extracted features to recognize true nodules and label them on original images. Experimental results indicate that our algorithm can not only achieve high accuracy and specificity but also can reduce the misdiagnosis, which is able to supply reference information with the radiologist detecting pulmonary nodules.
Author Shao, Hong
Cao, Li
Liu, Yang
Author_xml – sequence: 1
  givenname: Hong
  surname: Shao
  fullname: Shao, Hong
  email: shaoh1974@hotmail.com
  organization: School of Information Science and Engineering, Shenyang University of Technology, Shenyang, China
– sequence: 2
  givenname: Li
  surname: Cao
  fullname: Cao, Li
  organization: School of Information Science and Engineering, Shenyang University of Technology, Shenyang, China
– sequence: 3
  givenname: Yang
  surname: Liu
  fullname: Liu, Yang
  organization: School of Information Science and Engineering, Shenyang University of Technology, Shenyang, China
BookMark eNpFT0tOwzAUNAIkaOkJuvEFEp7j2I6XVUShUgULwrp6iZ8hKI2jOF309gRRidXMLOa3YDd96ImxtYBUCLCPu7J8f63SDESWapVpocQVW4hcG5lZndvrfyHhjq1i_AaA2apNIe_ZdsMdTdRMbeg5DsMYsPniPow8hq6dcDzz4dQdQ__L-uBOHUVeYyTHZ0NZ8faInxQf2K3HLtLqgkv2sX2qypdk__a8Kzf7pBVGTYmjps6N8qLQ4JW1ykjZZMaRyWVBWM_LDNpakTYEjXYaAa3LiwJBSl-DXLL1X25LRIdhnNvH8-HyW_4Ao-BOGQ
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICCSNT.2012.6526151
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1467329649
9781467329644
9781467329620
1467329622
EndPage 1257
ExternalDocumentID 6526151
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ADFMO
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
IEGSK
IERZE
OCL
RIE
RIL
ID FETCH-LOGICAL-i175t-decb475f1860f5995733c27de7438eab0007a9b5e67e0c6d6a0a9d488a033fb03
IEDL.DBID RIE
ISBN 1467329630
9781467329637
ISICitedReferencesCount 25
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000324540000271&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Sep 03 07:09:52 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-decb475f1860f5995733c27de7438eab0007a9b5e67e0c6d6a0a9d488a033fb03
PageCount 5
ParticipantIDs ieee_primary_6526151
PublicationCentury 2000
PublicationDate 2012-Dec.
PublicationDateYYYYMMDD 2012-12-01
PublicationDate_xml – month: 12
  year: 2012
  text: 2012-Dec.
PublicationDecade 2010
PublicationTitle 2012 2nd International Conference on Computer Science and Network Technology
PublicationTitleAbbrev ICCSNT
PublicationYear 2012
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001106783
Score 1.6816597
Snippet It has been indicated that detection of pulmonary nodules plays an important role in diagnosing lung cancer in early-stage. In this paper, we propose an...
SourceID ieee
SourceType Publisher
StartPage 1253
SubjectTerms Accuracy
Classification algorithms
Computed tomography
Feature extraction
Image segmentation
Lung cancer
Lungs
solitary pulmonary nodules
specificity
SVM classifier
Training
Tumors
Wiener filters
Title A detection approach for solitary pulmonary nodules based on CT images
URI https://ieeexplore.ieee.org/document/6526151
WOSCitedRecordID wos000324540000271&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA61ePCk0opvcvDotmnSTXaPslj0UgpW6K3kMYFC3ZZuV_Dfm0nXFsGLtySQkPcMyfd9Q8iDMtJ6G24_roVNhj6FRKsco7lnOU-9lcabGGxCjcfZbJZPWuRxz4UBgAg-gx4m41--W9kan8r6MuVogI_IkVJyx9U6vKegFlomIndLKsHDxtpLOjV51agODVjefy2Kt_EUoV281zT7K75KNC-j0_917Ix0Dzw9OtlboHPSgrJDRk_UwTYirEr6IxlOg29KK8S66c0XXdfLsPswVa5cvYSKojFzNFQopnTxEe6YqkveR8_T4iVpoiUki-ACbBMH1gxV6geZZB5lxJQQlisHwUfIQEdvQOcmBamAWemkZjp34fxqJoQ3TFyQdrkq4ZJQx5HbJBjzCOOzRjvuPADzA-lMZsQV6eAczNc7QYx5M_zrv4tvyAlO8w4Dckva200Nd-TYfm4X1eY-ruI3_fOatQ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LS8MwGA_zAXpS2cS3OXi0W9asSXuU4thwloEVdht5fIHB7MbWCv73JlndELx4SwMpzaP5PpLfA6EHLpkyyu5-oaAq6JkIAsET5-YeJ2FkFJNGerMJnmXxZJKMG-hxy4UBAA8-g7Yr-rt8vVCVOyrrsCh0AXgPHTjnrGjD1tqdqDg1tJh69hbjNLRLayvqVD_zWneoS5LOME3fstyBu8J2_eJfDis-wPRP_vdpp6i1Y-rh8TYGnaEGFE3Uf8IaSo-xKvCPaDi22SleO7SbWH3hZTW368-VioWu5rDGLpxpbBukOZ592F1m3ULv_ec8HQS1X0Iws0lAGWhQsscj040ZMU5IjFOqQq7BZgkxCJ8PiERGwDgQxTQTRCTa_sGCUGokoedov1gUcIGwDh27iRJiHJBPSaFDbQCI6TItY0kvUdONwXS5kcSY1t2_-rv6Hh0N8tfRdDTMXq7RsRvyDSLkBu2Xqwpu0aH6LGfr1Z2f0W9GiZ4A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2012+2nd+International+Conference+on+Computer+Science+and+Network+Technology&rft.atitle=A+detection+approach+for+solitary+pulmonary+nodules+based+on+CT+images&rft.au=Shao%2C+Hong&rft.au=Cao%2C+Li&rft.au=Liu%2C+Yang&rft.date=2012-12-01&rft.pub=IEEE&rft.isbn=9781467329637&rft.spage=1253&rft.epage=1257&rft_id=info:doi/10.1109%2FICCSNT.2012.6526151&rft.externalDocID=6526151
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781467329637/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781467329637/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781467329637/sc.gif&client=summon&freeimage=true