Image segmentation based on Support Vector Machine

In content-based multimedia technologies, video object extraction has received more and more attention. In this paper, Support Vector Machine (SVM) is proposed for image segmentation. The SVM is a learning machine algorithm, can reduce the segmentation error which caused by fast motion of the object...

Full description

Saved in:
Bibliographic Details
Published in:2012 2nd International Conference on Computer Science and Network Technology pp. 202 - 206
Main Authors: Wang, Xuejun, Wang, Shuang, Zhu, Yubin, Meng, Xiangyi
Format: Conference Proceeding
Language:English
Published: IEEE 01.12.2012
Subjects:
ISBN:1467329630, 9781467329637
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In content-based multimedia technologies, video object extraction has received more and more attention. In this paper, Support Vector Machine (SVM) is proposed for image segmentation. The SVM is a learning machine algorithm, can reduce the segmentation error which caused by fast motion of the object. Firstly, frame difference combined with morphology of mathematics is applied to extract the object roughly. Then, the gray value of image pixels and DCT parameters are computed as the characters of the image for training SVM. Finally, a hierarchical decomposed SVM binary decision tree is used for classification. Experimental results show that the algorithm is effective and robust.
AbstractList In content-based multimedia technologies, video object extraction has received more and more attention. In this paper, Support Vector Machine (SVM) is proposed for image segmentation. The SVM is a learning machine algorithm, can reduce the segmentation error which caused by fast motion of the object. Firstly, frame difference combined with morphology of mathematics is applied to extract the object roughly. Then, the gray value of image pixels and DCT parameters are computed as the characters of the image for training SVM. Finally, a hierarchical decomposed SVM binary decision tree is used for classification. Experimental results show that the algorithm is effective and robust.
Author Meng, Xiangyi
Zhu, Yubin
Wang, Shuang
Wang, Xuejun
Author_xml – sequence: 1
  givenname: Xuejun
  surname: Wang
  fullname: Wang, Xuejun
  email: wangs10@mails.jlu.edu.cn
  organization: College of Communication Engineering, Jilin University, Changchun, China
– sequence: 2
  givenname: Shuang
  surname: Wang
  fullname: Wang, Shuang
  organization: College of Communication Engineering, Jilin University, Changchun, China
– sequence: 3
  givenname: Yubin
  surname: Zhu
  fullname: Zhu, Yubin
  organization: College of Communication Engineering, Jilin University, Changchun, China
– sequence: 4
  givenname: Xiangyi
  surname: Meng
  fullname: Meng, Xiangyi
  organization: College of Communication Engineering, Jilin University, Changchun, China
BookMark eNpFj8tOwzAURI0oErT0C7rxDyRc2_EjSxTxiFRg0ZZtZSfXxYg8FJsFf08kKrGaM9LMSLMki37okZANg5wxKO_qqtq97nMOjOdKcllydkGWrFBa8FIV5eW_EXBN1jF-AsBcVdqIG8Lrzp6QRjx12CebwtBTZyO2dIbd9zgOU6Lv2KRhoi-2-Qg93pIrb78irs-6IofHh331nG3fnurqfpsFpmXKWtdi4cFqz9EYw10DjZSe-5YpqdGwGSyAbgUKxDmnHDSFN1qXUjouxIps_nYDIh7HKXR2-jmeP4pf82ZHNg
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICCSNT.2012.6525921
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1467329649
9781467329644
9781467329620
1467329622
EndPage 206
ExternalDocumentID 6525921
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ADFMO
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
IEGSK
IERZE
OCL
RIE
RIL
ID FETCH-LOGICAL-i175t-dbde4f0a7f2e8882bc0c55f2fd1657e81fd1a007d3e3ee0a76b0c4f877955b233
IEDL.DBID RIE
ISBN 1467329630
9781467329637
ISICitedReferencesCount 8
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000324540000043&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Sep 03 07:09:52 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-dbde4f0a7f2e8882bc0c55f2fd1657e81fd1a007d3e3ee0a76b0c4f877955b233
PageCount 5
ParticipantIDs ieee_primary_6525921
PublicationCentury 2000
PublicationDate 2012-Dec.
PublicationDateYYYYMMDD 2012-12-01
PublicationDate_xml – month: 12
  year: 2012
  text: 2012-Dec.
PublicationDecade 2010
PublicationTitle 2012 2nd International Conference on Computer Science and Network Technology
PublicationTitleAbbrev ICCSNT
PublicationYear 2012
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001106783
Score 1.5730295
Snippet In content-based multimedia technologies, video object extraction has received more and more attention. In this paper, Support Vector Machine (SVM) is proposed...
SourceID ieee
SourceType Publisher
StartPage 202
SubjectTerms Binary decision tree
Classification algorithms
Discrete cosine transforms
Entropy
Feature extraction
Image edge detection
Image segmentation
Support Vector Machine
Support vector machines
Training
Videos
Title Image segmentation based on Support Vector Machine
URI https://ieeexplore.ieee.org/document/6525921
WOSCitedRecordID wos000324540000043&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFH7M4cGTyib-JgePdmuTpknPw-FAx8Apu422eZEd1snW-ff7kpYOwYu311JK04R8772873sAD8bGuc6kCAQa4yg5IsgcUVdhKkOUxupaJOlFTad6sUhnHXhsuTCI6IvPcOBMf5ZvNsXepcqGiSRn3bHGj5RKaq7WIZ_itNC08NytRAlOC6uVdGquVaM6FIXpcDIavU3nrrSLD5rX_uqv4uFlfPq_DzuD_oGnx2YtAp1DB8se8Mma9gi2w891wysqmcMqw8hwTTzJ4WYfPlnPXn0pJfbhffw0Hz0HTWeEYEVwXwUmNxjbMFOWI4WwPC_CQkrLrYkSqVBHZGSE_kagQKTnkjwsYquVSqXMuRAX0C03JV4CowCDnKhUk58Rx7HIUky0xiKkWTMU3pgr6LnxLr9q8YtlM9Trv2_fwIn7pXW9xy10q-0e7-C4-K5Wu-29n7EfXkSRiQ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT8JAEN0QNNGTGjB-uwePFsp-dLdnIoEIDYlouJG2O2s4UAwUf7-z2wZi4sXbtGmabnezb2Z23htCnowVmU4lDzgY4yg5PEgdUVdBLEOQxupKJGmskkTP5_G0QZ73XBgA8MVn0HGmP8s363znUmXdSKKz7ljjR1IIFlZsrUNGxamhae7ZW5HiDJfWXtSpvla17lAvjLujfv8tmbniLtapX_yrw4oHmMHZ_z7tnLQPTD063WPQBWlA0SJstMJdgm7hc1Uziwrq0MpQNFwbT3S56YdP19OJL6aENnkfvMz6w6DujRAsEfDLwGQGhA1TZRlgEMuyPMyltMyaXiQV6B4aKeK_4cAB8LkoC3NhtVKxlBnj_JI0i3UBV4RiiIFuVKzR0xBC8DSGSGvIQ5w3gwGOuSYtN97FVyV_saiHevP37UdyMpxNxovxKHm9Jafu91bVH3ekWW52cE-O8-9yud08-Nn7ASlMlNA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2012+2nd+International+Conference+on+Computer+Science+and+Network+Technology&rft.atitle=Image+segmentation+based+on+Support+Vector+Machine&rft.au=Wang%2C+Xuejun&rft.au=Wang%2C+Shuang&rft.au=Zhu%2C+Yubin&rft.au=Meng%2C+Xiangyi&rft.date=2012-12-01&rft.pub=IEEE&rft.isbn=9781467329637&rft.spage=202&rft.epage=206&rft_id=info:doi/10.1109%2FICCSNT.2012.6525921&rft.externalDocID=6525921
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781467329637/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781467329637/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781467329637/sc.gif&client=summon&freeimage=true