Image segmentation based on Support Vector Machine
In content-based multimedia technologies, video object extraction has received more and more attention. In this paper, Support Vector Machine (SVM) is proposed for image segmentation. The SVM is a learning machine algorithm, can reduce the segmentation error which caused by fast motion of the object...
Saved in:
| Published in: | 2012 2nd International Conference on Computer Science and Network Technology pp. 202 - 206 |
|---|---|
| Main Authors: | , , , |
| Format: | Conference Proceeding |
| Language: | English |
| Published: |
IEEE
01.12.2012
|
| Subjects: | |
| ISBN: | 1467329630, 9781467329637 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | In content-based multimedia technologies, video object extraction has received more and more attention. In this paper, Support Vector Machine (SVM) is proposed for image segmentation. The SVM is a learning machine algorithm, can reduce the segmentation error which caused by fast motion of the object. Firstly, frame difference combined with morphology of mathematics is applied to extract the object roughly. Then, the gray value of image pixels and DCT parameters are computed as the characters of the image for training SVM. Finally, a hierarchical decomposed SVM binary decision tree is used for classification. Experimental results show that the algorithm is effective and robust. |
|---|---|
| AbstractList | In content-based multimedia technologies, video object extraction has received more and more attention. In this paper, Support Vector Machine (SVM) is proposed for image segmentation. The SVM is a learning machine algorithm, can reduce the segmentation error which caused by fast motion of the object. Firstly, frame difference combined with morphology of mathematics is applied to extract the object roughly. Then, the gray value of image pixels and DCT parameters are computed as the characters of the image for training SVM. Finally, a hierarchical decomposed SVM binary decision tree is used for classification. Experimental results show that the algorithm is effective and robust. |
| Author | Meng, Xiangyi Zhu, Yubin Wang, Shuang Wang, Xuejun |
| Author_xml | – sequence: 1 givenname: Xuejun surname: Wang fullname: Wang, Xuejun email: wangs10@mails.jlu.edu.cn organization: College of Communication Engineering, Jilin University, Changchun, China – sequence: 2 givenname: Shuang surname: Wang fullname: Wang, Shuang organization: College of Communication Engineering, Jilin University, Changchun, China – sequence: 3 givenname: Yubin surname: Zhu fullname: Zhu, Yubin organization: College of Communication Engineering, Jilin University, Changchun, China – sequence: 4 givenname: Xiangyi surname: Meng fullname: Meng, Xiangyi organization: College of Communication Engineering, Jilin University, Changchun, China |
| BookMark | eNpFj8tOwzAURI0oErT0C7rxDyRc2_EjSxTxiFRg0ZZtZSfXxYg8FJsFf08kKrGaM9LMSLMki37okZANg5wxKO_qqtq97nMOjOdKcllydkGWrFBa8FIV5eW_EXBN1jF-AsBcVdqIG8Lrzp6QRjx12CebwtBTZyO2dIbd9zgOU6Lv2KRhoi-2-Qg93pIrb78irs-6IofHh331nG3fnurqfpsFpmXKWtdi4cFqz9EYw10DjZSe-5YpqdGwGSyAbgUKxDmnHDSFN1qXUjouxIps_nYDIh7HKXR2-jmeP4pf82ZHNg |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/ICCSNT.2012.6525921 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 1467329649 9781467329644 9781467329620 1467329622 |
| EndPage | 206 |
| ExternalDocumentID | 6525921 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IF 6IK 6IL 6IN AAJGR AAWTH ADFMO ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK IEGSK IERZE OCL RIE RIL |
| ID | FETCH-LOGICAL-i175t-dbde4f0a7f2e8882bc0c55f2fd1657e81fd1a007d3e3ee0a76b0c4f877955b233 |
| IEDL.DBID | RIE |
| ISBN | 1467329630 9781467329637 |
| ISICitedReferencesCount | 8 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000324540000043&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Sep 03 07:09:52 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i175t-dbde4f0a7f2e8882bc0c55f2fd1657e81fd1a007d3e3ee0a76b0c4f877955b233 |
| PageCount | 5 |
| ParticipantIDs | ieee_primary_6525921 |
| PublicationCentury | 2000 |
| PublicationDate | 2012-Dec. |
| PublicationDateYYYYMMDD | 2012-12-01 |
| PublicationDate_xml | – month: 12 year: 2012 text: 2012-Dec. |
| PublicationDecade | 2010 |
| PublicationTitle | 2012 2nd International Conference on Computer Science and Network Technology |
| PublicationTitleAbbrev | ICCSNT |
| PublicationYear | 2012 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0001106783 |
| Score | 1.5730295 |
| Snippet | In content-based multimedia technologies, video object extraction has received more and more attention. In this paper, Support Vector Machine (SVM) is proposed... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 202 |
| SubjectTerms | Binary decision tree Classification algorithms Discrete cosine transforms Entropy Feature extraction Image edge detection Image segmentation Support Vector Machine Support vector machines Training Videos |
| Title | Image segmentation based on Support Vector Machine |
| URI | https://ieeexplore.ieee.org/document/6525921 |
| WOSCitedRecordID | wos000324540000043&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFH7M4cGTyib-JgePdmuTpknPw-FAx8Apu422eZEd1snW-ff7kpYOwYu311JK04R8772873sAD8bGuc6kCAQa4yg5IsgcUVdhKkOUxupaJOlFTad6sUhnHXhsuTCI6IvPcOBMf5ZvNsXepcqGiSRn3bHGj5RKaq7WIZ_itNC08NytRAlOC6uVdGquVaM6FIXpcDIavU3nrrSLD5rX_uqv4uFlfPq_DzuD_oGnx2YtAp1DB8se8Mma9gi2w891wysqmcMqw8hwTTzJ4WYfPlnPXn0pJfbhffw0Hz0HTWeEYEVwXwUmNxjbMFOWI4WwPC_CQkrLrYkSqVBHZGSE_kagQKTnkjwsYquVSqXMuRAX0C03JV4CowCDnKhUk58Rx7HIUky0xiKkWTMU3pgr6LnxLr9q8YtlM9Trv2_fwIn7pXW9xy10q-0e7-C4-K5Wu-29n7EfXkSRiQ |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT8JAEN0QNNGTGjB-uwePFsp-dLdnIoEIDYlouJG2O2s4UAwUf7-z2wZi4sXbtGmabnezb2Z23htCnowVmU4lDzgY4yg5PEgdUVdBLEOQxupKJGmskkTP5_G0QZ73XBgA8MVn0HGmP8s363znUmXdSKKz7ljjR1IIFlZsrUNGxamhae7ZW5HiDJfWXtSpvla17lAvjLujfv8tmbniLtapX_yrw4oHmMHZ_z7tnLQPTD063WPQBWlA0SJstMJdgm7hc1Uziwrq0MpQNFwbT3S56YdP19OJL6aENnkfvMz6w6DujRAsEfDLwGQGhA1TZRlgEMuyPMyltMyaXiQV6B4aKeK_4cAB8LkoC3NhtVKxlBnj_JI0i3UBV4RiiIFuVKzR0xBC8DSGSGvIQ5w3gwGOuSYtN97FVyV_saiHevP37UdyMpxNxovxKHm9Jafu91bVH3ekWW52cE-O8-9yud08-Nn7ASlMlNA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2012+2nd+International+Conference+on+Computer+Science+and+Network+Technology&rft.atitle=Image+segmentation+based+on+Support+Vector+Machine&rft.au=Wang%2C+Xuejun&rft.au=Wang%2C+Shuang&rft.au=Zhu%2C+Yubin&rft.au=Meng%2C+Xiangyi&rft.date=2012-12-01&rft.pub=IEEE&rft.isbn=9781467329637&rft.spage=202&rft.epage=206&rft_id=info:doi/10.1109%2FICCSNT.2012.6525921&rft.externalDocID=6525921 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781467329637/lc.gif&client=summon&freeimage=true |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781467329637/mc.gif&client=summon&freeimage=true |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781467329637/sc.gif&client=summon&freeimage=true |

