Automatic text summarization based on sentences clustering and extraction

Technology of automatic text summarization plays an important role in information retrieval and text classification, and may provide a solution to the information overload problem. Text summarization is a process of reducing the size of a text while preserving its information content. This paper pro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2009 2nd IEEE International Conference on Computer Science and Information Technology S. 167 - 170
Hauptverfasser: Zhang Pei-ying, Li Cun-he
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 01.08.2009
Schlagworte:
ISBN:1424445191, 9781424445196
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Technology of automatic text summarization plays an important role in information retrieval and text classification, and may provide a solution to the information overload problem. Text summarization is a process of reducing the size of a text while preserving its information content. This paper proposes a sentences clustering based summarization approach. The proposed approach consists of three steps: first clusters the sentences based on the semantic distance among sentences in the document, and then on each cluster calculates the accumulative sentence similarity based on the multi-features combination method, at last chooses the topic sentences by some extraction rules. The purpose of present paper is to show that summarization result is not only depends the sentence features, but also depends on the sentence similarity measure. The experimental result on the DUC 2003 dataset show that our proposed approach can improve the performance compared to other summarization methods.
AbstractList Technology of automatic text summarization plays an important role in information retrieval and text classification, and may provide a solution to the information overload problem. Text summarization is a process of reducing the size of a text while preserving its information content. This paper proposes a sentences clustering based summarization approach. The proposed approach consists of three steps: first clusters the sentences based on the semantic distance among sentences in the document, and then on each cluster calculates the accumulative sentence similarity based on the multi-features combination method, at last chooses the topic sentences by some extraction rules. The purpose of present paper is to show that summarization result is not only depends the sentence features, but also depends on the sentence similarity measure. The experimental result on the DUC 2003 dataset show that our proposed approach can improve the performance compared to other summarization methods.
Author Li Cun-he
Zhang Pei-ying
Author_xml – sequence: 1
  surname: Zhang Pei-ying
  fullname: Zhang Pei-ying
  organization: Coll. of Comput. & Commun. Eng., China Univ. of Pet., Dongying, China
– sequence: 2
  surname: Li Cun-he
  fullname: Li Cun-he
  organization: Coll. of Comput. & Commun. Eng., China Univ. of Pet., Dongying, China
BookMark eNotkM1Kw0AQgFe0oKl5gl72BRr3180cS1AbKHiwnssmO5FIs5HsBtSnd4uZy_zwzfAxGbnxo0dCNpwVnDN4qKvqrT4WgjEotJAKDL8iOZiSK6GU0oKJa5ItDQe-ItmFBSYN8FuSh_DJUiQQjLoj9W6O42Bj39KI35GGeRjs1P-myehpYwM6moqAPqJvMdD2PIeIU-8_qPWOpp3Jthf4nqw6ew6YL3lN3p-fjtV-e3h9qavdYdtzo-PWNarsQDDQphGlwFbJZCeFA2Su0wxkacsGOSY9a50GbgSX6IQrbdc8olyTzf_dHhFPX1OffH9OyyvkH5vWUyE
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICCSIT.2009.5234971
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781424445202
1424445205
EndPage 170
ExternalDocumentID 5234971
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
AARBI
AAWTH
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
IERZE
OCL
RIE
RIL
ID FETCH-LOGICAL-i175t-db48f920957b282ec4309932d9e0df50938a8be1e974aad5917213ed2d8afb6e3
IEDL.DBID RIE
ISBN 1424445191
9781424445196
ISICitedReferencesCount 30
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000279807700036&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:22:53 EDT 2025
IsPeerReviewed false
IsScholarly false
LCCN 2009903791
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-db48f920957b282ec4309932d9e0df50938a8be1e974aad5917213ed2d8afb6e3
PageCount 4
ParticipantIDs ieee_primary_5234971
PublicationCentury 2000
PublicationDate 2009-Aug.
PublicationDateYYYYMMDD 2009-08-01
PublicationDate_xml – month: 08
  year: 2009
  text: 2009-Aug.
PublicationDecade 2000
PublicationTitle 2009 2nd IEEE International Conference on Computer Science and Information Technology
PublicationTitleAbbrev ICCSIT
PublicationYear 2009
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000452974
Score 1.536174
Snippet Technology of automatic text summarization plays an important role in information retrieval and text classification, and may provide a solution to the...
SourceID ieee
SourceType Publisher
StartPage 167
SubjectTerms Clustering algorithms
Data mining
Educational institutions
Information retrieval
Natural language processing
Petroleum
sentence extractive technique
sentences clustering
similarity measure
Text categorization
text summarization
Volume measurement
Web sites
Title Automatic text summarization based on sentences clustering and extraction
URI https://ieeexplore.ieee.org/document/5234971
WOSCitedRecordID wos000279807700036&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEB1q8eBJpRW_ycGja3c3m93kKMViL6Vghd5KsplAQbZSd_39nWS3FcGLtySQECaEeZPMewPwII1NS69wWeTGRZmQcaS5cFFpuTBGacx0HIpNFLOZXC7VvAePBy4MIobkM3zyzfCXbzdl45_KRhQ0ZcoTxo-KIm-5Wof3FC8NTth4z93yqinJXtKp6-ed6lASq9F0PH6bLlq9ym7ZX_VVgnuZnP5vY2cw_OHpsfnBA51DD6sBTJ-behOEWJnP6mAtPa2jWzLvtSyjhicdhRxqVn40Xi2BVmC6sozmbFu2wxDeJy-L8WvUFUyI1oQC6siaTDqVEmoqDIVSWGacACBPrcLYOoIGXGppMEEylNZWKB__cbSpldqZHPkF9KtNhZfADOEKbuj-0yFnKFKdm0Q4aygCQuF0egUDb4bVZ6uJseoscP338A2ctL8wPnHuFvr1tsE7OC6_6_XX9j4c5A66xpyA
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA5jCnpS2cTf5uDRurZpuuQow7HiHAMn7DaS5gUG0klt_ft9SbuJ4MVbEkgIL5D3veR93yPkTmgT507hcphqGyRchIFi3Aa5YVxrqSBRoS82MZzNxHIp5x1yv-PCAIBPPoMH1_R_-WaT1-6pbIBBUyIdYXzPVc7iDVtr96LixMERHW_ZW043JdqKOrX9tNUdikI5yEaj12zRKFa2C_-qsOIdzPjof1s7Jv0fph6d73zQCelA0SPZY11tvBQrdXkdtCGotYRL6vyWodhwtCOfRU3z99rpJeAKVBWG4pyy4Tv0ydv4aTGaBG3JhGCNOKAKjE6ElTHipqHGYAryhCEEZLGREBqL4IAJJTREgIZSynDpIkAGJjZCWZ0COyXdYlPAGaEakQXTeAPgMSfAY5XqiFujMQYCblV8TnrODKuPRhVj1Vrg4u_hW3IwWbxMV9Ns9nxJDps_GZdGd0W6VVnDNdnPv6r1Z3njD_UbGVGfyw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2009+2nd+IEEE+International+Conference+on+Computer+Science+and+Information+Technology&rft.atitle=Automatic+text+summarization+based+on+sentences+clustering+and+extraction&rft.au=Zhang+Pei-ying&rft.au=Li+Cun-he&rft.date=2009-08-01&rft.pub=IEEE&rft.isbn=9781424445196&rft.spage=167&rft.epage=170&rft_id=info:doi/10.1109%2FICCSIT.2009.5234971&rft.externalDocID=5234971
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424445196/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424445196/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424445196/sc.gif&client=summon&freeimage=true