Resolving Zero Divisors Using Hensel Lifting
Algorithms which compute modulo triangular sets must respect zero divisors. We present Hensel lifting as a tool for resolving them. We give an application: a modular algorithm for computing gcds of univariate polynomials with coefficients modulo a radical triangular set over the rational numbers. We...
Uloženo v:
| Vydáno v: | 2017 19th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC) s. 39 - 48 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
01.09.2017
|
| Témata: | |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Algorithms which compute modulo triangular sets must respect zero divisors. We present Hensel lifting as a tool for resolving them. We give an application: a modular algorithm for computing gcds of univariate polynomials with coefficients modulo a radical triangular set over the rational numbers. We have implemented our algorithm using Maple's RECDEN package. We compare our implementation with the procedure RegularGcd in the RegularChains package. |
|---|---|
| DOI: | 10.1109/SYNASC.2017.00017 |