Resolving Zero Divisors Using Hensel Lifting

Algorithms which compute modulo triangular sets must respect zero divisors. We present Hensel lifting as a tool for resolving them. We give an application: a modular algorithm for computing gcds of univariate polynomials with coefficients modulo a radical triangular set over the rational numbers. We...

Full description

Saved in:
Bibliographic Details
Published in:2017 19th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC) pp. 39 - 48
Main Authors: Kluesner, John, Monagan, Michael
Format: Conference Proceeding
Language:English
Published: IEEE 01.09.2017
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Algorithms which compute modulo triangular sets must respect zero divisors. We present Hensel lifting as a tool for resolving them. We give an application: a modular algorithm for computing gcds of univariate polynomials with coefficients modulo a radical triangular set over the rational numbers. We have implemented our algorithm using Maple's RECDEN package. We compare our implementation with the procedure RegularGcd in the RegularChains package.
AbstractList Algorithms which compute modulo triangular sets must respect zero divisors. We present Hensel lifting as a tool for resolving them. We give an application: a modular algorithm for computing gcds of univariate polynomials with coefficients modulo a radical triangular set over the rational numbers. We have implemented our algorithm using Maple's RECDEN package. We compare our implementation with the procedure RegularGcd in the RegularChains package.
Author Monagan, Michael
Kluesner, John
Author_xml – sequence: 1
  givenname: John
  surname: Kluesner
  fullname: Kluesner, John
– sequence: 2
  givenname: Michael
  surname: Monagan
  fullname: Monagan, Michael
BookMark eNotTl1LwzAUjaCgm_sB4kt_gK3Jvb1N9zjqx4Si4NyDvow0uZFIbaUZA_-9EeXA-Xo4nJk4HsaBhbhQslBKLq83r4-rTVOAVLqQMvGRmCnCuoKE-lQsYvxIffJU0fJMXD1zHPtDGN6zN57G7CYcQhynmG3jb7fmIXKftcHvUzwXJ970kRf_Ohfbu9uXZp23T_cPzarNg9K0z512XGvw5ErSbKmznSMmgyUog9YbcJq79MGVCgwQyEpL0B7Rdlhbi3Nx-bcbmHn3NYVPM33vakIFFeIPdbtCcA
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/SYNASC.2017.00017
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library (IEL) (UW System Shared)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1538626268
9781538626269
EndPage 48
ExternalDocumentID 8531263
Genre orig-research
GroupedDBID 6IE
6IF
6IL
6IN
AAJGR
AAWTH
ABLEC
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
IEGSK
OCL
RIB
RIC
RIE
RIL
ID FETCH-LOGICAL-i175t-d7de872f5d457ec5bcbd5e5a3421a3cfa2d7eb026d412a252067027f33cb38cc3
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000517584500009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:51:32 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-d7de872f5d457ec5bcbd5e5a3421a3cfa2d7eb026d412a252067027f33cb38cc3
PageCount 10
ParticipantIDs ieee_primary_8531263
PublicationCentury 2000
PublicationDate 2017-Sep
PublicationDateYYYYMMDD 2017-09-01
PublicationDate_xml – month: 09
  year: 2017
  text: 2017-Sep
PublicationDecade 2010
PublicationTitle 2017 19th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)
PublicationTitleAbbrev SYNASC
PublicationYear 2017
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0002685659
Score 1.6709355
Snippet Algorithms which compute modulo triangular sets must respect zero divisors. We present Hensel lifting as a tool for resolving them. We give an application: a...
SourceID ieee
SourceType Publisher
StartPage 39
SubjectTerms Complexity theory
Hensel Lifting
Image reconstruction
Modular Algorithms
Polynomial GCD
Radical Ideals
Scientific computing
Testing
Triangular Sets
Title Resolving Zero Divisors Using Hensel Lifting
URI https://ieeexplore.ieee.org/document/8531263
WOSCitedRecordID wos000517584500009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NawIxEB1UeuipLVr6TQ49utUkm69jsRUPRQRbsL3IbjKBhaJFV39_kyiWQi-9LbksMzm8zJt5bwDuUSpruTNZ3_tQoKA2mfHCZZ76XOqCWcdcWjahxmM9m5lJA7oHLQwipuEzfIifqZfvlnYTqbJegBbKJG9CUym102od-BQmdXibmH3jkvZNb_o-fpwO4vRWcimkvxeoJPwYnvzvz6fQ-RHikckBYs6ggYs2dCPl_hmJAPKBqyV5qrbRQnNNUvufjDCKzMlL5eNEcwfehs-vg1G2X3qQVQHJ68wph1qxkK9cKLSitKUTKAqeM1pw6wvmFJYhXJdTVjAR7ddDaek5tyXXIe_n0FosF3gBRJiS517q0ka5rfQm1Cam712Un1Jp3CW0Y6Tzr52vxXwf5NXfx9dwHFO5m6-6gVa92uAtHNltXa1Xd-kyvgGgIYsZ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEB1qFfSk0orf5uCxa7vJJpscpVoq1qXQCtVL2U0msFBa6dfvN0lLRfDiLeQSZnJ4mZf3ZgDuUaRaM6OilrWuQEGpImW5iWxsEyFzqg01YdhEmmVyNFL9CjR2XhhEDOIzfPDL8JdvZnrlqbKmg5aYCrYH-zxJaLxxa-0YFSqke52o7ddl3FLNwUf2OGh7_VboUxj_HqESEKRz_L-zT6D-Y8Uj_R3InEIFpzVoeNJ94qkA8onzGXkq176J5oIEAQDporeZk15pvaa5Du-d52G7G23HHkSlw_JlZFKDMqUuYwlPUfNCF4Yjz5kLOWfa5tSkWLhwTRLTnHLfgN0Vl5YxXTDpMn8G1elsiudAuCpYYoUstDfcCqtcdaJa1ngDaiyUuYCaj3T8telsMd4Gefn39h0cdodvvXHvJXu9giOf1o3a6hqqy_kKb-BAr5flYn4bLuYbESyOYA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2017+19th+International+Symposium+on+Symbolic+and+Numeric+Algorithms+for+Scientific+Computing+%28SYNASC%29&rft.atitle=Resolving+Zero+Divisors+Using+Hensel+Lifting&rft.au=Kluesner%2C+John&rft.au=Monagan%2C+Michael&rft.date=2017-09-01&rft.pub=IEEE&rft.spage=39&rft.epage=48&rft_id=info:doi/10.1109%2FSYNASC.2017.00017&rft.externalDocID=8531263