Robust sparse coding for face recognition

Recently the sparse representation (or coding) based classification (SRC) has been successfully used in face recognition. In SRC, the testing image is represented as a sparse linear combination of the training samples, and the representation fidelity is measured by the l 2 -norm or l 1 -norm of codi...

Full description

Saved in:
Bibliographic Details
Published in:CVPR 2011 pp. 625 - 632
Main Authors: Meng Yang, Lei Zhang, Jian Yang, Zhang, D.
Format: Conference Proceeding
Language:English
Published: IEEE 01.06.2011
Subjects:
ISBN:1457703947, 9781457703942
ISSN:1063-6919, 1063-6919
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Recently the sparse representation (or coding) based classification (SRC) has been successfully used in face recognition. In SRC, the testing image is represented as a sparse linear combination of the training samples, and the representation fidelity is measured by the l 2 -norm or l 1 -norm of coding residual. Such a sparse coding model actually assumes that the coding residual follows Gaussian or Laplacian distribution, which may not be accurate enough to describe the coding errors in practice. In this paper, we propose a new scheme, namely the robust sparse coding (RSC), by modeling the sparse coding as a sparsity-constrained robust regression problem. The RSC seeks for the MLE (maximum likelihood estimation) solution of the sparse coding problem, and it is much more robust to outliers (e.g., occlusions, corruptions, etc.) than SRC. An efficient iteratively reweighted sparse coding algorithm is proposed to solve the RSC model. Extensive experiments on representative face databases demonstrate that the RSC scheme is much more effective than state-of-the-art methods in dealing with face occlusion, corruption, lighting and expression changes, etc.
AbstractList Recently the sparse representation (or coding) based classification (SRC) has been successfully used in face recognition. In SRC, the testing image is represented as a sparse linear combination of the training samples, and the representation fidelity is measured by the l 2 -norm or l 1 -norm of coding residual. Such a sparse coding model actually assumes that the coding residual follows Gaussian or Laplacian distribution, which may not be accurate enough to describe the coding errors in practice. In this paper, we propose a new scheme, namely the robust sparse coding (RSC), by modeling the sparse coding as a sparsity-constrained robust regression problem. The RSC seeks for the MLE (maximum likelihood estimation) solution of the sparse coding problem, and it is much more robust to outliers (e.g., occlusions, corruptions, etc.) than SRC. An efficient iteratively reweighted sparse coding algorithm is proposed to solve the RSC model. Extensive experiments on representative face databases demonstrate that the RSC scheme is much more effective than state-of-the-art methods in dealing with face occlusion, corruption, lighting and expression changes, etc.
Author Zhang, D.
Meng Yang
Lei Zhang
Jian Yang
Author_xml – sequence: 1
  surname: Meng Yang
  fullname: Meng Yang
  organization: Hong Kong Polytech. Univ., Hong Kong, China
– sequence: 2
  surname: Lei Zhang
  fullname: Lei Zhang
  organization: Hong Kong Polytech. Univ., Hong Kong, China
– sequence: 3
  surname: Jian Yang
  fullname: Jian Yang
  organization: Nanjing Univ. of Sci. & Tech., Nanjing, China
– sequence: 4
  givenname: D.
  surname: Zhang
  fullname: Zhang, D.
  organization: Hong Kong Polytech. Univ., Hong Kong, China
BookMark eNpNj01Lw0AYhFetYFv7A8RLrh4S981-vkcJfkFBKeq17GdZ0WzJxoP_3oAFncsMPMzALMisz30g5AJoA0Dxunt73jQtBWgEomDIjsgCuFCKThmPyRyoZLVEwJM_wNXsHzgjq1Le6SQpNQo1J1ebbL_KWJW9GUqoXPap31UxD1U0LlRDcHnXpzHl_pycRvNRwurgS_J6d_vSPdTrp_vH7mZdJ1BirL3gXBvlrKbCeWkDSBUFVw5ZNFpbtAod48G0rdNgvJXeeT8VmDbMSc-W5PJ3N4UQtvshfZrhe3u4zH4AxHxIBg
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/CVPR.2011.5995393
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Xplore
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISBN 1457703939
1457703955
9781457703959
9781457703935
EISSN 1063-6919
EndPage 632
ExternalDocumentID 5995393
Genre orig-research
GroupedDBID 23M
29F
29O
6IE
6IH
6IK
ABDPE
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CBEJK
IPLJI
M43
RIE
RIO
RNS
ID FETCH-LOGICAL-i175t-d5448a7cb805cd6be167f547c93fa88b9b79c34ea22c81adb6dcdda7c38a3c6d3
IEDL.DBID RIE
ISBN 1457703947
9781457703942
ISICitedReferencesCount 427
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000295615800078&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1063-6919
IngestDate Wed Aug 27 03:27:48 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-d5448a7cb805cd6be167f547c93fa88b9b79c34ea22c81adb6dcdda7c38a3c6d3
PageCount 8
ParticipantIDs ieee_primary_5995393
PublicationCentury 2000
PublicationDate 2011-June
PublicationDateYYYYMMDD 2011-06-01
PublicationDate_xml – month: 06
  year: 2011
  text: 2011-June
PublicationDecade 2010
PublicationTitle CVPR 2011
PublicationTitleAbbrev CVPR
PublicationYear 2011
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000668957
ssj0023720
ssj0003211698
Score 2.4005828
Snippet Recently the sparse representation (or coding) based classification (SRC) has been successfully used in face recognition. In SRC, the testing image is...
SourceID ieee
SourceType Publisher
StartPage 625
SubjectTerms Encoding
Face
Image coding
Maximum likelihood estimation
Robustness
Training
Title Robust sparse coding for face recognition
URI https://ieeexplore.ieee.org/document/5995393
WOSCitedRecordID wos000295615800078&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELXaioGpQIv4VgYWJEITf99cUTGgqqoAdavisyN1SVDT8vuxkzQIiYUtPslOZMe5yz2_d4Tc59IKnkuMIQcbc6WTOHNh4wnvTQTjFpOaKPyq5nO9WsGiRx47Loxzrj585p7CZY3l2xL3IVU2CeJYDFif9JWSDVery6d416mhRfBCm_k_GwkdokBDNZYa-ZQslpBCTfISyr_wwNVB-6lt0xb-TBOYTD8Wy0bps737rzIstReaDf_3_Cdk_EPnixadozolPVeckWEbf0bt7q686VDi4WAbkYdlafbVLvLfnW3lIizDCJEPdKM886N2x4_KYkzeZ89v05e4ra4Qb3zIsIv9GnGdKTQ6EWilcalUueAKgeWZ1gaMAmTcZZSiTjNrpEVrfQemM4bSsnMyKMrCXZAodUHWTxlOc8YppkZoQIHIqAGgSlySUZiM9WcjoLFu5-Hqb_M1OW4StyHVcUMGu-3e3ZIj_Nptqu1dverfqzqjlA
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF5qFfRUtRXf5uBFMLbZ95yLpWItpVTprWQfgV4SaVJ_v7tJGhG8eMsOZEP2kZnMt998CN0n3DCacB1CAiakQg7C2PqNx5w3YYQaPSiJwhMxncrlEmYt9NhwYay15eEz--QvSyzfZHrrU2V9XxyLANlD-145i1VsrSaj4pynhBrD823i_m04NJgC9nosJfbJScghgpLmxYRb8kDFrvpT3cY1ABoNoD_8mM2rWp_1838JsZR-aNT53xsco94PoS-YNa7qBLVseoo6dQQa1Ps7d6adyMPO1kUP80xt8yJwX55NbgOd-R4CF-oGSex6bQ4gZWkPvY-eF8NxWOsrhGsXNBShmyUqY6GVHDBtuLIRFwmjQgNJYikVKAGaUBtjrGUUG8WNNsbdQGRMNDfkDLXTLLXnKIisL-wnFMUJoVhHiknQTGuCFQAW7AJ1_WCsPqsSGqt6HC7_Nt-hw_HibbKavExfr9BRlcb1iY9r1C42W3uDDvRXsc43t-UK-AZvXKbf
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=CVPR+2011&rft.atitle=Robust+sparse+coding+for+face+recognition&rft.au=Meng+Yang&rft.au=Lei+Zhang&rft.au=Jian+Yang&rft.au=Zhang%2C+D.&rft.date=2011-06-01&rft.pub=IEEE&rft.isbn=9781457703942&rft.issn=1063-6919&rft.eissn=1063-6919&rft.spage=625&rft.epage=632&rft_id=info:doi/10.1109%2FCVPR.2011.5995393&rft.externalDocID=5995393
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6919&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6919&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6919&client=summon