Robust sparse coding for face recognition
Recently the sparse representation (or coding) based classification (SRC) has been successfully used in face recognition. In SRC, the testing image is represented as a sparse linear combination of the training samples, and the representation fidelity is measured by the l 2 -norm or l 1 -norm of codi...
Saved in:
| Published in: | CVPR 2011 pp. 625 - 632 |
|---|---|
| Main Authors: | , , , |
| Format: | Conference Proceeding |
| Language: | English |
| Published: |
IEEE
01.06.2011
|
| Subjects: | |
| ISBN: | 1457703947, 9781457703942 |
| ISSN: | 1063-6919, 1063-6919 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Recently the sparse representation (or coding) based classification (SRC) has been successfully used in face recognition. In SRC, the testing image is represented as a sparse linear combination of the training samples, and the representation fidelity is measured by the l 2 -norm or l 1 -norm of coding residual. Such a sparse coding model actually assumes that the coding residual follows Gaussian or Laplacian distribution, which may not be accurate enough to describe the coding errors in practice. In this paper, we propose a new scheme, namely the robust sparse coding (RSC), by modeling the sparse coding as a sparsity-constrained robust regression problem. The RSC seeks for the MLE (maximum likelihood estimation) solution of the sparse coding problem, and it is much more robust to outliers (e.g., occlusions, corruptions, etc.) than SRC. An efficient iteratively reweighted sparse coding algorithm is proposed to solve the RSC model. Extensive experiments on representative face databases demonstrate that the RSC scheme is much more effective than state-of-the-art methods in dealing with face occlusion, corruption, lighting and expression changes, etc. |
|---|---|
| AbstractList | Recently the sparse representation (or coding) based classification (SRC) has been successfully used in face recognition. In SRC, the testing image is represented as a sparse linear combination of the training samples, and the representation fidelity is measured by the l 2 -norm or l 1 -norm of coding residual. Such a sparse coding model actually assumes that the coding residual follows Gaussian or Laplacian distribution, which may not be accurate enough to describe the coding errors in practice. In this paper, we propose a new scheme, namely the robust sparse coding (RSC), by modeling the sparse coding as a sparsity-constrained robust regression problem. The RSC seeks for the MLE (maximum likelihood estimation) solution of the sparse coding problem, and it is much more robust to outliers (e.g., occlusions, corruptions, etc.) than SRC. An efficient iteratively reweighted sparse coding algorithm is proposed to solve the RSC model. Extensive experiments on representative face databases demonstrate that the RSC scheme is much more effective than state-of-the-art methods in dealing with face occlusion, corruption, lighting and expression changes, etc. |
| Author | Zhang, D. Meng Yang Lei Zhang Jian Yang |
| Author_xml | – sequence: 1 surname: Meng Yang fullname: Meng Yang organization: Hong Kong Polytech. Univ., Hong Kong, China – sequence: 2 surname: Lei Zhang fullname: Lei Zhang organization: Hong Kong Polytech. Univ., Hong Kong, China – sequence: 3 surname: Jian Yang fullname: Jian Yang organization: Nanjing Univ. of Sci. & Tech., Nanjing, China – sequence: 4 givenname: D. surname: Zhang fullname: Zhang, D. organization: Hong Kong Polytech. Univ., Hong Kong, China |
| BookMark | eNpNj01Lw0AYhFetYFv7A8RLrh4S981-vkcJfkFBKeq17GdZ0WzJxoP_3oAFncsMPMzALMisz30g5AJoA0Dxunt73jQtBWgEomDIjsgCuFCKThmPyRyoZLVEwJM_wNXsHzgjq1Le6SQpNQo1J1ebbL_KWJW9GUqoXPap31UxD1U0LlRDcHnXpzHl_pycRvNRwurgS_J6d_vSPdTrp_vH7mZdJ1BirL3gXBvlrKbCeWkDSBUFVw5ZNFpbtAod48G0rdNgvJXeeT8VmDbMSc-W5PJ3N4UQtvshfZrhe3u4zH4AxHxIBg |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IH CBEJK RIE RIO |
| DOI | 10.1109/CVPR.2011.5995393 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Xplore IEEE Proceedings Order Plans (POP) 1998-present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Computer Science |
| EISBN | 1457703939 1457703955 9781457703959 9781457703935 |
| EISSN | 1063-6919 |
| EndPage | 632 |
| ExternalDocumentID | 5995393 |
| Genre | orig-research |
| GroupedDBID | 23M 29F 29O 6IE 6IH 6IK ABDPE ACGFS ALMA_UNASSIGNED_HOLDINGS CBEJK IPLJI M43 RIE RIO RNS |
| ID | FETCH-LOGICAL-i175t-d5448a7cb805cd6be167f547c93fa88b9b79c34ea22c81adb6dcdda7c38a3c6d3 |
| IEDL.DBID | RIE |
| ISBN | 1457703947 9781457703942 |
| ISICitedReferencesCount | 427 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000295615800078&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1063-6919 |
| IngestDate | Wed Aug 27 03:27:48 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i175t-d5448a7cb805cd6be167f547c93fa88b9b79c34ea22c81adb6dcdda7c38a3c6d3 |
| PageCount | 8 |
| ParticipantIDs | ieee_primary_5995393 |
| PublicationCentury | 2000 |
| PublicationDate | 2011-June |
| PublicationDateYYYYMMDD | 2011-06-01 |
| PublicationDate_xml | – month: 06 year: 2011 text: 2011-June |
| PublicationDecade | 2010 |
| PublicationTitle | CVPR 2011 |
| PublicationTitleAbbrev | CVPR |
| PublicationYear | 2011 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0000668957 ssj0023720 ssj0003211698 |
| Score | 2.4005828 |
| Snippet | Recently the sparse representation (or coding) based classification (SRC) has been successfully used in face recognition. In SRC, the testing image is... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 625 |
| SubjectTerms | Encoding Face Image coding Maximum likelihood estimation Robustness Training |
| Title | Robust sparse coding for face recognition |
| URI | https://ieeexplore.ieee.org/document/5995393 |
| WOSCitedRecordID | wos000295615800078&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELXaioGpQIv4VgYWJEITf99cUTGgqqoAdavisyN1SVDT8vuxkzQIiYUtPslOZMe5yz2_d4Tc59IKnkuMIQcbc6WTOHNh4wnvTQTjFpOaKPyq5nO9WsGiRx47Loxzrj585p7CZY3l2xL3IVU2CeJYDFif9JWSDVery6d416mhRfBCm_k_GwkdokBDNZYa-ZQslpBCTfISyr_wwNVB-6lt0xb-TBOYTD8Wy0bps737rzIstReaDf_3_Cdk_EPnixadozolPVeckWEbf0bt7q686VDi4WAbkYdlafbVLvLfnW3lIizDCJEPdKM886N2x4_KYkzeZ89v05e4ra4Qb3zIsIv9GnGdKTQ6EWilcalUueAKgeWZ1gaMAmTcZZSiTjNrpEVrfQemM4bSsnMyKMrCXZAodUHWTxlOc8YppkZoQIHIqAGgSlySUZiM9WcjoLFu5-Hqb_M1OW4StyHVcUMGu-3e3ZIj_Nptqu1dverfqzqjlA |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF5qFfRUtRXf5uBFMLbZ95yLpWItpVTprWQfgV4SaVJ_v7tJGhG8eMsOZEP2kZnMt998CN0n3DCacB1CAiakQg7C2PqNx5w3YYQaPSiJwhMxncrlEmYt9NhwYay15eEz--QvSyzfZHrrU2V9XxyLANlD-145i1VsrSaj4pynhBrD823i_m04NJgC9nosJfbJScghgpLmxYRb8kDFrvpT3cY1ABoNoD_8mM2rWp_1838JsZR-aNT53xsco94PoS-YNa7qBLVseoo6dQQa1Ps7d6adyMPO1kUP80xt8yJwX55NbgOd-R4CF-oGSex6bQ4gZWkPvY-eF8NxWOsrhGsXNBShmyUqY6GVHDBtuLIRFwmjQgNJYikVKAGaUBtjrGUUG8WNNsbdQGRMNDfkDLXTLLXnKIisL-wnFMUJoVhHiknQTGuCFQAW7AJ1_WCsPqsSGqt6HC7_Nt-hw_HibbKavExfr9BRlcb1iY9r1C42W3uDDvRXsc43t-UK-AZvXKbf |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=CVPR+2011&rft.atitle=Robust+sparse+coding+for+face+recognition&rft.au=Meng+Yang&rft.au=Lei+Zhang&rft.au=Jian+Yang&rft.au=Zhang%2C+D.&rft.date=2011-06-01&rft.pub=IEEE&rft.isbn=9781457703942&rft.issn=1063-6919&rft.eissn=1063-6919&rft.spage=625&rft.epage=632&rft_id=info:doi/10.1109%2FCVPR.2011.5995393&rft.externalDocID=5995393 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6919&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6919&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6919&client=summon |

