Densely Connected Convolutional Networks
Recent work has shown that convolutional networks can be substantially deeper, more accurate, and efficient to train if they contain shorter connections between layers close to the input and those close to the output. In this paper, we embrace this observation and introduce the Dense Convolutional N...
Uloženo v:
| Vydáno v: | 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) s. 2261 - 2269 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
01.07.2017
|
| Témata: | |
| ISSN: | 1063-6919, 1063-6919 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Recent work has shown that convolutional networks can be substantially deeper, more accurate, and efficient to train if they contain shorter connections between layers close to the input and those close to the output. In this paper, we embrace this observation and introduce the Dense Convolutional Network (DenseNet), which connects each layer to every other layer in a feed-forward fashion. Whereas traditional convolutional networks with L layers have L connections-one between each layer and its subsequent layer-our network has L(L+1)/2 direct connections. For each layer, the feature-maps of all preceding layers are used as inputs, and its own feature-maps are used as inputs into all subsequent layers. DenseNets have several compelling advantages: they alleviate the vanishing-gradient problem, strengthen feature propagation, encourage feature reuse, and substantially reduce the number of parameters. We evaluate our proposed architecture on four highly competitive object recognition benchmark tasks (CIFAR-10, CIFAR-100, SVHN, and ImageNet). DenseNets obtain significant improvements over the state-of-the-art on most of them, whilst requiring less memory and computation to achieve high performance. Code and pre-trained models are available at https://github.com/liuzhuang13/DenseNet. |
|---|---|
| AbstractList | Recent work has shown that convolutional networks can be substantially deeper, more accurate, and efficient to train if they contain shorter connections between layers close to the input and those close to the output. In this paper, we embrace this observation and introduce the Dense Convolutional Network (DenseNet), which connects each layer to every other layer in a feed-forward fashion. Whereas traditional convolutional networks with L layers have L connections-one between each layer and its subsequent layer-our network has L(L+1)/2 direct connections. For each layer, the feature-maps of all preceding layers are used as inputs, and its own feature-maps are used as inputs into all subsequent layers. DenseNets have several compelling advantages: they alleviate the vanishing-gradient problem, strengthen feature propagation, encourage feature reuse, and substantially reduce the number of parameters. We evaluate our proposed architecture on four highly competitive object recognition benchmark tasks (CIFAR-10, CIFAR-100, SVHN, and ImageNet). DenseNets obtain significant improvements over the state-of-the-art on most of them, whilst requiring less memory and computation to achieve high performance. Code and pre-trained models are available at https://github.com/liuzhuang13/DenseNet. |
| Author | Huang, Gao Liu, Zhuang Weinberger, Kilian Q. Van Der Maaten, Laurens |
| Author_xml | – sequence: 1 givenname: Gao surname: Huang fullname: Huang, Gao email: gh349@cornell.edu organization: Cornell University – sequence: 2 givenname: Zhuang surname: Liu fullname: Liu, Zhuang email: liuzhuang13@mails.tsinghua.edu.cn organization: Tsinghua University – sequence: 3 givenname: Laurens surname: Van Der Maaten fullname: Van Der Maaten, Laurens email: lvdmaaten@fb.com organization: Facebook AI Research – sequence: 4 givenname: Kilian Q. surname: Weinberger fullname: Weinberger, Kilian Q. email: kqw4@cornell.edu organization: Cornell University |
| BookMark | eNpNzDtPwzAUQGGDikRTGJlYOrIk3Ou3RxSeUgUIAWvl2jdSINgoDqD-e4RgYDrfdCo2SzkRY0cIDSK40_b5_qHhgKbhUuywCpWwGqQycpfNEbSotUM3--d9VpXyAsCF4TBnJ-eUCg3bZZtTojBR_NFnHj6mPic_LG9p-srjazlge50fCh3-dcGeLi8e2-t6dXd1056t6h6NmuqIFkKIESlaHXUQ1qoAmrTlkryWijZOoKBOOmclGWU7qTuzwY4L7wyJBTv-_fZEtH4f-zc_btcWnDNci2-bp0NJ |
| CODEN | IEEPAD |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IH CBEJK RIE RIO |
| DOI | 10.1109/CVPR.2017.243 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library (IEL) (UW System Shared) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Computer Science |
| EISBN | 1538604574 9781538604571 |
| EISSN | 1063-6919 |
| EndPage | 2269 |
| ExternalDocumentID | 8099726 |
| Genre | orig-research |
| GroupedDBID | 23M 29F 29O 6IE 6IH 6IK ABDPE ACGFS ALMA_UNASSIGNED_HOLDINGS CBEJK IPLJI M43 RIE RIO RNS |
| ID | FETCH-LOGICAL-i175t-d180ccdd1ed86d6c3885c06e6824ea645eb9313ef49984e758f46f7b1f23a97e3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 27620 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000418371402035&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1063-6919 |
| IngestDate | Wed Aug 27 06:13:56 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i175t-d180ccdd1ed86d6c3885c06e6824ea645eb9313ef49984e758f46f7b1f23a97e3 |
| PageCount | 9 |
| ParticipantIDs | ieee_primary_8099726 |
| PublicationCentury | 2000 |
| PublicationDate | 2017-July |
| PublicationDateYYYYMMDD | 2017-07-01 |
| PublicationDate_xml | – month: 07 year: 2017 text: 2017-July |
| PublicationDecade | 2010 |
| PublicationTitle | 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) |
| PublicationTitleAbbrev | CVPR |
| PublicationYear | 2017 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0023720 ssj0003211698 |
| Score | 2.630527 |
| Snippet | Recent work has shown that convolutional networks can be substantially deeper, more accurate, and efficient to train if they contain shorter connections... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 2261 |
| SubjectTerms | Convolution Convolutional codes Network architecture Neural networks Road transportation Training |
| Title | Densely Connected Convolutional Networks |
| URI | https://ieeexplore.ieee.org/document/8099726 |
| WOSCitedRecordID | wos000418371402035&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB5a8eCpaiu-2YMHD6btbrJ5nKvFg5QiKr2VbDKBgrTSF_jvTbLbrQcv3sKcwkzCvL5vBuAuc-gdibCEaa0JK5wgSlhDlBMoipx5JxXnzL6I0UhOJmrcgIeaC4OIEXyG3XCMvXy7MJtQKuvJSPPkTWgKIUquVl1PoT6T4aruIGRh-0rsdHJKuErVfr5mb_Axfg2gLtHNAlnn11aV6FSGrf9d5xg6e3ZeMq79zgk0cH4KrSqcTKrPuvKi3caGnawN948YGOjfScS3GB9thtO2en76MxmVqPBVB96HT2-DZ1LtSiAzHwCsiU1l3xhrU7SSW26olLnpc-QyY6g5y7FQNKXofIYjGfoswTHuRJG6jGolkJ7BwXwxx3NIvO2stjktGCJLC-nNVoh-7phTzipLL6AddDH9KsdhTCs1XP4tvoKjoOoS4XoNB-vlBm_g0GzXs9XyNtrwB_8Mmro |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEJ4gmugJFYxv9-DBg0V22-3jjBKMuCEGDTeyu50mJAYMr8R_b9tdwIMXb82cmpk28_q-GYDbyKB1JEITlqYpYZkRRAmdE2UEiixm1kn5ObM9kSRyOFT9CtxvuDCI6MFn2HRH38vX03zpSmUP0tM8-Q7sxoxFYcHW2lRUqM1luNr0ECK3f8X3OjklXIVqO2Hzof3Rf3OwLtGMHF3n114V71Y6tf9d6BAaW35e0N94niOo4OQYamVAGZTfdW5F650Na1kd7h7RcdC_A49wyW286U6r8gGmn0FS4MLnDXjvPA3aXVJuSyBjGwIsiA5lK8-1DlFLrnlOpYzzFkcuI4YpZzFmioYUjc1xJEObJxjGjchCE9FUCaQnUJ1MJ3gKgbWeTnVMM4bIwkxaw2WiFRtmlNFK0zOoO12MvoqBGKNSDed_i29gvzt47Y16z8nLBRw4tRd410uoLmZLvIK9fLUYz2fX3p4_PxWeAQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=2017+IEEE+Conference+on+Computer+Vision+and+Pattern+Recognition+%28CVPR%29&rft.atitle=Densely+Connected+Convolutional+Networks&rft.au=Huang%2C+Gao&rft.au=Liu%2C+Zhuang&rft.au=Van+Der+Maaten%2C+Laurens&rft.au=Weinberger%2C+Kilian+Q.&rft.date=2017-07-01&rft.pub=IEEE&rft.issn=1063-6919&rft.eissn=1063-6919&rft.spage=2261&rft.epage=2269&rft_id=info:doi/10.1109%2FCVPR.2017.243&rft.externalDocID=8099726 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6919&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6919&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6919&client=summon |