A Partition-Based Implementation of the Relaxed ADMM for Distributed Convex Optimization over Lossy Networks

In this paper we propose a distributed implementation of the relaxed Alternating Direction Method of Multipliers algorithm (R-ADMM) for optimization of a separable convex cost function, whose terms are stored by a set of interacting agents, one for each agent. Specifically the local cost stored by e...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the IEEE Conference on Decision & Control pp. 3379 - 3384
Main Authors: Bastianello, N., Carli, R., Schenato, L., Todescato, M.
Format: Conference Proceeding
Language:English
Published: IEEE 01.12.2018
Subjects:
ISSN:2576-2370
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In this paper we propose a distributed implementation of the relaxed Alternating Direction Method of Multipliers algorithm (R-ADMM) for optimization of a separable convex cost function, whose terms are stored by a set of interacting agents, one for each agent. Specifically the local cost stored by each node is in general a function of both the state of the node and the states of its neighbors, a framework that we refer to as 'partition-based' optimization. This framework presents a great flexibility and can be adapted to a large number of different applications. By recasting the problem into an operator theoretical framework, the proposed algorithm is shown to be provably robust against random packet losses that might occur in the communication between neighboring nodes. Finally, the effectiveness of the proposed algorithm is confirmed by a set of compelling numerical simulations run over random geometric graphs subject to i.i.d. random packet losses.
AbstractList In this paper we propose a distributed implementation of the relaxed Alternating Direction Method of Multipliers algorithm (R-ADMM) for optimization of a separable convex cost function, whose terms are stored by a set of interacting agents, one for each agent. Specifically the local cost stored by each node is in general a function of both the state of the node and the states of its neighbors, a framework that we refer to as 'partition-based' optimization. This framework presents a great flexibility and can be adapted to a large number of different applications. By recasting the problem into an operator theoretical framework, the proposed algorithm is shown to be provably robust against random packet losses that might occur in the communication between neighboring nodes. Finally, the effectiveness of the proposed algorithm is confirmed by a set of compelling numerical simulations run over random geometric graphs subject to i.i.d. random packet losses.
Author Todescato, M.
Schenato, L.
Carli, R.
Bastianello, N.
Author_xml – sequence: 1
  givenname: N.
  surname: Bastianello
  fullname: Bastianello, N.
  organization: Department of Information Engineering (DEI), University of Padova, Italy
– sequence: 2
  givenname: R.
  surname: Carli
  fullname: Carli, R.
  organization: Department of Information Engineering (DEI), University of Padova, Italy
– sequence: 3
  givenname: L.
  surname: Schenato
  fullname: Schenato, L.
  organization: Department of Information Engineering (DEI), University of Padova, Italy
– sequence: 4
  givenname: M.
  surname: Todescato
  fullname: Todescato, M.
  organization: Bosch Center for Artificial Intelligence, Renningen, Germany
BookMark eNotUE1PwjAYrkYTAbmbeOkfGLbrStsjDj9IQIzRM-nWt7G6raStCP56Z-T05Pk8PEN01vkOELqiZEIpUTflvJzkhMqJnFIlcnWCxkpIylnPmeL8FA1yLqZZzgS5QMMYPwhhShVsgJoZftYhueR8l93qCAYv2m0DLXRJ_4nYW5zeAb9Ao_e9O5uvVtj6gOcupuCqr9SLpe92sMfrbXKt-zn2dhDw0sd4wE-Qvn34jJfo3OomwviII_R2f_daPmbL9cOinC0zRwVPWV1pxai0oqJTrmVdF9ZIJomoaVEAgC1YbZjJqamMtFxzqSpueU6UNLRWio3Q9f-u69ObbXCtDofN8Rz2C9xzW6c
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/CDC.2018.8619729
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9781538613955
1538613956
EISSN 2576-2370
EndPage 3384
ExternalDocumentID 8619729
Genre orig-research
GroupedDBID 29P
6IE
6IH
6IL
6IN
AAWTH
ABLEC
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
M43
OCL
RIE
RIL
RIO
ID FETCH-LOGICAL-i175t-cba9318f7b165a8cc4fd83807c144eeef43cd3d21dbd8f5a589b5f52098d1c993
IEDL.DBID RIE
ISICitedReferencesCount 8
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000458114803028&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 03:05:39 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-cba9318f7b165a8cc4fd83807c144eeef43cd3d21dbd8f5a589b5f52098d1c993
PageCount 6
ParticipantIDs ieee_primary_8619729
PublicationCentury 2000
PublicationDate 2018-Dec.
PublicationDateYYYYMMDD 2018-12-01
PublicationDate_xml – month: 12
  year: 2018
  text: 2018-Dec.
PublicationDecade 2010
PublicationTitle Proceedings of the IEEE Conference on Decision & Control
PublicationTitleAbbrev CDC
PublicationYear 2018
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0039943
Score 1.7528478
Snippet In this paper we propose a distributed implementation of the relaxed Alternating Direction Method of Multipliers algorithm (R-ADMM) for optimization of a...
SourceID ieee
SourceType Publisher
StartPage 3379
SubjectTerms ADMM
Convergence
Convex functions
distributed optimization
Nickel
operator theory
Optimization
partition-based optimization
Partitioning algorithms
Peaceman-Rachford operator
Peer-to-peer computing
splitting methods
Trajectory
Title A Partition-Based Implementation of the Relaxed ADMM for Distributed Convex Optimization over Lossy Networks
URI https://ieeexplore.ieee.org/document/8619729
WOSCitedRecordID wos000458114803028&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEJ4A8aAXH2B8Zw8eXWhtS3ePWCQeBDlowo1s95GQSCE8DP57Z9qCmnjx1mzTNp1J9_u2-818ALdekCodC58rRDMeKuFxaXTEkWw4G8i2cNLlZhPxYCBGIzmswN2uFsZam4vPbJMO8718M9Nr-lXWEm0yyZJVqMZxXNRqbWddxNkw2G5DerKVdBPSbYlmec0v85QcO3qH_3vqETS-i_DYcAcvx1Cx2Qkc_OgfWIf3DhtS6im4_AHxyLC82--0LCjK2MwxZHiMJG8bPNvp9vsMaSrrUr9csrrCwYSE5xv2gpPHtKzKZCTsZM8IoJ9sUAjFlw146z2-Jk-8tE_gE-QEK65TJfGLdXHqtyMltA6dEdRfXuMiCt_ShYE2gbn3TWqEi1QkZBo5ksUI42vkLadQy2aZPQMmjMalD4K7VjrUyHSNs56K_RDv5WwankOd4jaeFx0yxmXILv4evoR9Sk0hCrmC2mqxttewpz9Wk-XiJk_rF6vpptQ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEJ4gmqgXH2h8uwePLrR0S3ePWCQYoXLAhBtp95GQSDE8DP57Z9uCmnjx1mzTNp1J9_u2-818AHeOl8Qy4C6NEc0oi7lDhZI-RbJhtCca3AiTmU0EUcSHQ9Evwf2mFkZrnYnPdNUeZnv5aiqX9ldZjTesSZbYgm2fsbqbV2ut511EWuatNyIdUQtboVVu8Wpx1S_7lAw92gf_e-4hnHyX4ZH-BmCOoKTTY9j_0UGwAm9N0rfJt-GlD4hIimT9fidFSVFKpoYgxyNW9LbCs81Wr0eQqJKW7Zhrza5wMLTS8xV5weljUtRlEivtJF2E0E8S5VLx-Qm8th8HYYcWBgp0jKxgQWUSC_xmTZC4DT_mUjKjuO0wL3EZhW9pmCeVp-quShQ3fuxzkfjGCmO4ciUyl1Mop9NUnwHhSuLiB-FdxpJJ5LrKaCcOXIb3Mjph51CxcRu95z0yRkXILv4evoXdzqDXHXWfoudL2LNpyiUiV1BezJb6Gnbkx2I8n91kKf4Cg3eqGw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+of+the+IEEE+Conference+on+Decision+%26+Control&rft.atitle=A+Partition-Based+Implementation+of+the+Relaxed+ADMM+for+Distributed+Convex+Optimization+over+Lossy+Networks&rft.au=Bastianello%2C+N.&rft.au=Carli%2C+R.&rft.au=Schenato%2C+L.&rft.au=Todescato%2C+M.&rft.date=2018-12-01&rft.pub=IEEE&rft.eissn=2576-2370&rft.spage=3379&rft.epage=3384&rft_id=info:doi/10.1109%2FCDC.2018.8619729&rft.externalDocID=8619729