Large scale metric learning from equivalence constraints

In this paper, we raise important issues on scalability and the required degree of supervision of existing Mahalanobis metric learning methods. Often rather tedious optimization procedures are applied that become computationally intractable on a large scale. Further, if one considers the constantly...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2012 IEEE Conference on Computer Vision and Pattern Recognition s. 2288 - 2295
Hlavní autoři: Kostinger, M., Hirzer, M., Wohlhart, P., Roth, P. M., Bischof, H.
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.06.2012
Témata:
ISBN:9781467312264, 1467312266
ISSN:1063-6919, 1063-6919
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In this paper, we raise important issues on scalability and the required degree of supervision of existing Mahalanobis metric learning methods. Often rather tedious optimization procedures are applied that become computationally intractable on a large scale. Further, if one considers the constantly growing amount of data it is often infeasible to specify fully supervised labels for all data points. Instead, it is easier to specify labels in form of equivalence constraints. We introduce a simple though effective strategy to learn a distance metric from equivalence constraints, based on a statistical inference perspective. In contrast to existing methods we do not rely on complex optimization problems requiring computationally expensive iterations. Hence, our method is orders of magnitudes faster than comparable methods. Results on a variety of challenging benchmarks with rather diverse nature demonstrate the power of our method. These include faces in unconstrained environments, matching before unseen object instances and person re-identification across spatially disjoint cameras. In the latter two benchmarks we clearly outperform the state-of-the-art.
AbstractList In this paper, we raise important issues on scalability and the required degree of supervision of existing Mahalanobis metric learning methods. Often rather tedious optimization procedures are applied that become computationally intractable on a large scale. Further, if one considers the constantly growing amount of data it is often infeasible to specify fully supervised labels for all data points. Instead, it is easier to specify labels in form of equivalence constraints. We introduce a simple though effective strategy to learn a distance metric from equivalence constraints, based on a statistical inference perspective. In contrast to existing methods we do not rely on complex optimization problems requiring computationally expensive iterations. Hence, our method is orders of magnitudes faster than comparable methods. Results on a variety of challenging benchmarks with rather diverse nature demonstrate the power of our method. These include faces in unconstrained environments, matching before unseen object instances and person re-identification across spatially disjoint cameras. In the latter two benchmarks we clearly outperform the state-of-the-art.
Author Roth, P. M.
Kostinger, M.
Bischof, H.
Wohlhart, P.
Hirzer, M.
Author_xml – sequence: 1
  givenname: M.
  surname: Kostinger
  fullname: Kostinger, M.
  email: koestinger@icg.tugraz.at
  organization: Inst. for Comput. Graphics & Vision, Graz Univ. of Technol., Graz, Austria
– sequence: 2
  givenname: M.
  surname: Hirzer
  fullname: Hirzer, M.
  email: hirzer@icg.tugraz.at
  organization: Inst. for Comput. Graphics & Vision, Graz Univ. of Technol., Graz, Austria
– sequence: 3
  givenname: P.
  surname: Wohlhart
  fullname: Wohlhart, P.
  email: wohlhart@icg.tugraz.at
  organization: Inst. for Comput. Graphics & Vision, Graz Univ. of Technol., Graz, Austria
– sequence: 4
  givenname: P. M.
  surname: Roth
  fullname: Roth, P. M.
  email: pmroth@icg.tugraz.at
  organization: Inst. for Comput. Graphics & Vision, Graz Univ. of Technol., Graz, Austria
– sequence: 5
  givenname: H.
  surname: Bischof
  fullname: Bischof, H.
  email: bischof@icg.tugraz.at
  organization: Inst. for Comput. Graphics & Vision, Graz Univ. of Technol., Graz, Austria
BookMark eNpNkM1KxDAUhaOO4MzYBxA3fYGO-WmT3KUUR4WCIup2SNLbIdKmmlTBt7fgCJ7NWXwfZ3FWZBHGgIRcMLphjMJV_fr4tOGU8Y3kpQIBR2TFSqkE41zzY7JkVIpCAoMTkoHSf0yWi3_sjGQpvdE5s0GBL4luTNxjnpzpMR9wit7lPZoYfNjnXRyHHD8-_ddMg8PcjSFN0fgwpXNy2pk-YXboNXnZ3jzXd0XzcHtfXzeFZ6qaCqdaKToLrAVLuQbVOUsRbWmtBNRaOSuqqmyB26qU2rbglDUdSio0tVaINbn83fWIuHuPfjDxe3c4QfwArbJOKw
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/CVPR.2012.6247939
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISBN 1467312282
1467312274
9781467312271
9781467312288
EISSN 1063-6919
EndPage 2295
ExternalDocumentID 6247939
Genre orig-research
GroupedDBID 23M
29F
29O
6IE
6IH
6IK
ABDPE
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CBEJK
IPLJI
M43
RIE
RIO
RNS
ID FETCH-LOGICAL-i175t-c7d63fb91d9b02897fcb0eeb4bb69e887cb3554d92b5468bd9c7bafe60380bb33
IEDL.DBID RIE
ISBN 9781467312264
1467312266
ISICitedReferencesCount 976
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000309166202057&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1063-6919
IngestDate Wed Aug 27 04:27:19 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-c7d63fb91d9b02897fcb0eeb4bb69e887cb3554d92b5468bd9c7bafe60380bb33
PageCount 8
ParticipantIDs ieee_primary_6247939
PublicationCentury 2000
PublicationDate 2012-June
PublicationDateYYYYMMDD 2012-06-01
PublicationDate_xml – month: 06
  year: 2012
  text: 2012-June
PublicationDecade 2010
PublicationTitle 2012 IEEE Conference on Computer Vision and Pattern Recognition
PublicationTitleAbbrev CVPR
PublicationYear 2012
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000781092
ssj0023720
ssj0003211698
Score 2.4602537
Snippet In this paper, we raise important issues on scalability and the required degree of supervision of existing Mahalanobis metric learning methods. Often rather...
SourceID ieee
SourceType Publisher
StartPage 2288
SubjectTerms Benchmark testing
Measurement
Optimization
Scalability
Support vector machines
Training
Title Large scale metric learning from equivalence constraints
URI https://ieeexplore.ieee.org/document/6247939
WOSCitedRecordID wos000309166202057&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEG6AePDkA4zv9ODRwj6n7ZlIPBBCjBpuZNudNRwEhcXfb6eUNSZevG3nsN1M2-2038z3MXYnc6wyABRY6EJkGrXQldEiKnUEWhGJmKfMH8vJRM1metpi900tDCL65DPs06PH8suV3dJV2QASugfSbdaWEna1Ws19CpHWRAEhpHbqTjagG0QhITUWj3xCKkDH2hd5gUxjF3_AnvsptLMAf7oXDoav0yfKAEv6ofdfMix-Fxod_e_7j1nvp5yPT5uN6oS1cHnKjkL8ycPq3jjTXuJhb-syNaZMcb5xI4n8ndS3LA9CE2-cSlM4fm4Xbrb6TiwFm6Q5UW967GX08Dx8FEFsQSxcBFELK0tI3SjFpTaEPsrKmgjRZMaARvcrsoZCk1InJs9AmVJbaYoKIUpVZEyanrHOcrXEc8bzqDQyjxFKRXyEsQJ3rHIr3ShrbGyLC9Yl38w_dnwa8-CWy7_NV-yQ3L9Lz7pmnXq9xRt2YL_qxWZ96yfBN3AWqSw
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELVKQYKpQIv4JgMjbp0vJ54rqiJCVaGCulWxfUEdaKFJ-f34XDcIiYUtviFWfHZ89rt7j5DbJIYi4hwo5CKnkQBBRSEFZVowLlIkEbOU-VkyGqXTqRg3yF1dCwMANvkMuvhosXy9VGu8KuvxAO-BxA7ZjaMoYJtqrfpGBWlrmMMIsR2asw0XNaYQoB6LxT55SLnwhS3z4knomwiEb9mfXDtyAKh5Ya__On7GHLCg6_r_JcRi96FB639fcEg6PwV93rjeqo5IAxbHpOUiUM-t79KYtiIPW1ubpBnminul8SV476i_pTwnNfHmYXGKB5_ruZmvthOF4SaqTlRlh7wM7if9IXVyC3RuYoiKqkTz0PjJ10Ii_pgUSjIAGUnJBZifkZIYnGgRyDjiqdRCJTIvgLMwZVKG4QlpLpYLOCVezLRMYh-4TpGR0E-5OViZtS5TJZWv8jPSxrGZfWwYNWZuWM7_Nt-Q_eHkKZtlD6PHC3KArtgka12SZrVawxXZU1_VvFxd2wnxDXRWrHM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2012+IEEE+Conference+on+Computer+Vision+and+Pattern+Recognition&rft.atitle=Large+scale+metric+learning+from+equivalence+constraints&rft.au=Kostinger%2C+M.&rft.au=Hirzer%2C+M.&rft.au=Wohlhart%2C+P.&rft.au=Roth%2C+P.+M.&rft.date=2012-06-01&rft.pub=IEEE&rft.isbn=9781467312264&rft.issn=1063-6919&rft.eissn=1063-6919&rft.spage=2288&rft.epage=2295&rft_id=info:doi/10.1109%2FCVPR.2012.6247939&rft.externalDocID=6247939
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6919&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6919&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6919&client=summon