Experience Report: System Log Analysis for Anomaly Detection

Anomaly detection plays an important role in management of modern large-scale distributed systems. Logs, which record system runtime information, are widely used for anomaly detection. Traditionally, developers (or operators) often inspect the logs manually with keyword search and rule matching. The...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Proceedings - International Symposium on Software Reliability Engineering s. 207 - 218
Hlavní autoři: Shilin He, Jieming Zhu, Pinjia He, Lyu, Michael R.
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.10.2016
Témata:
ISSN:2332-6549
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Anomaly detection plays an important role in management of modern large-scale distributed systems. Logs, which record system runtime information, are widely used for anomaly detection. Traditionally, developers (or operators) often inspect the logs manually with keyword search and rule matching. The increasing scale and complexity of modern systems, however, make the volume of logs explode, which renders the infeasibility of manual inspection. To reduce manual effort, many anomaly detection methods based on automated log analysis are proposed. However, developers may still have no idea which anomaly detection methods they should adopt, because there is a lack of a review and comparison among these anomaly detection methods. Moreover, even if developers decide to employ an anomaly detection method, re-implementation requires a nontrivial effort. To address these problems, we provide a detailed review and evaluation of six state-of-the-art log-based anomaly detection methods, including three supervised methods and three unsupervised methods, and also release an open-source toolkit allowing ease of reuse. These methods have been evaluated on two publicly-available production log datasets, with a total of 15,923,592 log messages and 365,298 anomaly instances. We believe that our work, with the evaluation results as well as the corresponding findings, can provide guidelines for adoption of these methods and provide references for future development.
AbstractList Anomaly detection plays an important role in management of modern large-scale distributed systems. Logs, which record system runtime information, are widely used for anomaly detection. Traditionally, developers (or operators) often inspect the logs manually with keyword search and rule matching. The increasing scale and complexity of modern systems, however, make the volume of logs explode, which renders the infeasibility of manual inspection. To reduce manual effort, many anomaly detection methods based on automated log analysis are proposed. However, developers may still have no idea which anomaly detection methods they should adopt, because there is a lack of a review and comparison among these anomaly detection methods. Moreover, even if developers decide to employ an anomaly detection method, re-implementation requires a nontrivial effort. To address these problems, we provide a detailed review and evaluation of six state-of-the-art log-based anomaly detection methods, including three supervised methods and three unsupervised methods, and also release an open-source toolkit allowing ease of reuse. These methods have been evaluated on two publicly-available production log datasets, with a total of 15,923,592 log messages and 365,298 anomaly instances. We believe that our work, with the evaluation results as well as the corresponding findings, can provide guidelines for adoption of these methods and provide references for future development.
Author Pinjia He
Jieming Zhu
Lyu, Michael R.
Shilin He
Author_xml – sequence: 1
  surname: Shilin He
  fullname: Shilin He
  email: slhe@cse.cuhk.edu.hk
  organization: Dept. of Comput. Sci. & Eng., Chinese Univ. of Hong Kong, Hong Kong, China
– sequence: 2
  surname: Jieming Zhu
  fullname: Jieming Zhu
  email: jmzhu@cse.cuhk.edu.hk
  organization: Dept. of Comput. Sci. & Eng., Chinese Univ. of Hong Kong, Hong Kong, China
– sequence: 3
  surname: Pinjia He
  fullname: Pinjia He
  email: pjhe@cse.cuhk.edu.hk
  organization: Dept. of Comput. Sci. & Eng., Chinese Univ. of Hong Kong, Hong Kong, China
– sequence: 4
  givenname: Michael R.
  surname: Lyu
  fullname: Lyu, Michael R.
  email: lyu@cse.cuhk.edu.hk
  organization: Dept. of Comput. Sci. & Eng., Chinese Univ. of Hong Kong, Hong Kong, China
BookMark eNotjE9LwzAcQKMouE6PnrzkC7Tml7-NeBlz6qAgrAreRpb9KpG1KU0P9ttb0NPjvcPLyEUXOyTkFlgBwOz9tq53m4Iz0AWHM5KB1EZYxvjnOVlwIXiulbRXJEvpe65MAl-Qx81Pj0PAziPdYR-H8YHWUxqxpVX8oqvOnaYUEm3iMEtsZ6VPOKIfQ-yuyWXjTglv_rkkH8-b9_VrXr29bNerKg9g1Jh7qRVyaVEbr43TvkSmvS5LeywPByeNPXpjHHfABTO2VIo3UkuN3jNnLYglufv7BkTc90No3TDtjTFScRC_uCJHvQ
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ISSRE.2016.21
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 146739002X
9781467390026
EISSN 2332-6549
EndPage 218
ExternalDocumentID 7774521
Genre orig-research
GroupedDBID 23M
29G
29N
29O
6IE
6IF
6IH
6IK
6IL
6IN
AAJGR
AAWTH
ABLEC
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
M43
OCL
RIE
RIL
RNS
ID FETCH-LOGICAL-i175t-c465e249e67c67a6c8e06c6889d8bba479dc77a2a1230798552f4646ecc0a9913
IEDL.DBID RIE
ISICitedReferencesCount 367
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000391437700020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 01:53:14 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-c465e249e67c67a6c8e06c6889d8bba479dc77a2a1230798552f4646ecc0a9913
PageCount 12
ParticipantIDs ieee_primary_7774521
PublicationCentury 2000
PublicationDate 2016-Oct.
PublicationDateYYYYMMDD 2016-10-01
PublicationDate_xml – month: 10
  year: 2016
  text: 2016-Oct.
PublicationDecade 2010
PublicationTitle Proceedings - International Symposium on Software Reliability Engineering
PublicationTitleAbbrev ISSRE
PublicationYear 2016
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0020412
Score 2.515953
Snippet Anomaly detection plays an important role in management of modern large-scale distributed systems. Logs, which record system runtime information, are widely...
SourceID ieee
SourceType Publisher
StartPage 207
SubjectTerms Feature extraction
Industries
Inspection
Large-scale systems
Manuals
Open source software
Runtime
Title Experience Report: System Log Analysis for Anomaly Detection
URI https://ieeexplore.ieee.org/document/7774521
WOSCitedRecordID wos000391437700020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED2VioGpQIv4lgdG3IbE8Qdig1YgoaqiIHWrbOeCOpCgkvL7sZM0YWBh83mxdJb97ux37wCuhLYikkxRd9PFlBktqdRa0Sh1eGRtaFNVNZsQ06lcLNSsA9dNLQwiluQzHPph-Zef5Hbjn8pGwsUqsa8a3xGCV7VaTXLldaNaDc3R03z-MvbMLT70MqC_OqeUwDHp_W_JfRi0FXhk1mDLAXQwO4TetgUDqU9kH-5aqWJSxdK3pBIhJ8_5O9lKjhAXmjoj_3AmecCi5F9lA3ibjF_vH2ndEIGuHMoX1DIeo8uXkAvLheZWYsAtl1Il0hjNhEqsEDrUN57erWQchynjjLttCrQLBKMj6GZ5hsdAWJjExgrtAMzhEzeahzLBIMKAGcWMPIG-d8bys9K8WNZ-OP17-gz2vKsrkts5dIv1Bi9g134Xq6_1ZblRP0oPlGY
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwGP1C0ERPqGD8bQ8eLcyt6w_jTSEQJyGCCbel7Yrh4GZw-PfbbmN48OKt7aXJ17Tva_u-9wBumNQs4ERge9KFmCjJMZdS4GBh8UhrXy9EaTbBxmM-n4tJA27rWhhjTEE-M13XLP7yk0yv3VNZj9lcJXRV4zvOOauq1qqvV045aqui2RtNp699x92iXScE-ss7pYCOQet_kx5AZ1uDhyY1uhxCw6RH0NqYMKBqT7bhYStWjMps-h6VMuQoyt7RRnQE2eTUdrIP20VPJi8YWGkH3gb92eMQV5YIeGlxPsea0NDYG5OhTFMmqebGo5pyLhKulCRMJJox6cs7R_AWPAz9BaGE2oXypE0Fg2NopllqTgARPwmVZtJCmEUoqiT1eWK8wHhECaL4KbRdMOLPUvUiruJw9vfwNewNZy9RHI3Gz-ew78JeUt4uoJmv1uYSdvV3vvxaXRWL9gM3T5ev
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Proceedings+-+International+Symposium+on+Software+Reliability+Engineering&rft.atitle=Experience+Report%3A+System+Log+Analysis+for+Anomaly+Detection&rft.au=Shilin+He&rft.au=Jieming+Zhu&rft.au=Pinjia+He&rft.au=Lyu%2C+Michael+R.&rft.date=2016-10-01&rft.pub=IEEE&rft.eissn=2332-6549&rft.spage=207&rft.epage=218&rft_id=info:doi/10.1109%2FISSRE.2016.21&rft.externalDocID=7774521