T-CONV: A Convolutional Neural Network for Multi-scale Taxi Trajectory Prediction
Precise destination prediction of taxi trajectories can benefit many intelligent location based services such as accurate ad for passengers. Traditional prediction approaches, which treat trajectories as one-dimensional sequences and process them in single scale, fail to capture the diverse two-dime...
Saved in:
| Published in: | International Conference on Big Data and Smart Computing pp. 82 - 89 |
|---|---|
| Main Authors: | , , , |
| Format: | Conference Proceeding |
| Language: | English |
| Published: |
IEEE
01.01.2018
|
| Subjects: | |
| ISSN: | 2375-9356 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Precise destination prediction of taxi trajectories can benefit many intelligent location based services such as accurate ad for passengers. Traditional prediction approaches, which treat trajectories as one-dimensional sequences and process them in single scale, fail to capture the diverse two-dimensional patterns of trajectories in different spatial scales. In this paper, we propose T-CONV which models trajectories as two-dimensional images, and adopts multi-layer convolutional neural networks to combine multi-scale trajectory patterns to achieve precise prediction. Furthermore, we conduct gradient analysis to visualize the multi-scale spatial patterns captured by T-CONV and extract the areas with distinct influence on the ultimate prediction. Finally, we integrate multiple local enhancement convolutional fields to explore these important areas deeply for better prediction. Comprehensive experiments based on real trajectory data show that T-CONV can achieve higher accuracy than the state-of-the-art methods. |
|---|---|
| AbstractList | Precise destination prediction of taxi trajectories can benefit many intelligent location based services such as accurate ad for passengers. Traditional prediction approaches, which treat trajectories as one-dimensional sequences and process them in single scale, fail to capture the diverse two-dimensional patterns of trajectories in different spatial scales. In this paper, we propose T-CONV which models trajectories as two-dimensional images, and adopts multi-layer convolutional neural networks to combine multi-scale trajectory patterns to achieve precise prediction. Furthermore, we conduct gradient analysis to visualize the multi-scale spatial patterns captured by T-CONV and extract the areas with distinct influence on the ultimate prediction. Finally, we integrate multiple local enhancement convolutional fields to explore these important areas deeply for better prediction. Comprehensive experiments based on real trajectory data show that T-CONV can achieve higher accuracy than the state-of-the-art methods. |
| Author | Sun, Qinghui Li, Qing Wang, Xintong Lv, Jianming |
| Author_xml | – sequence: 1 givenname: Jianming surname: Lv fullname: Lv, Jianming – sequence: 2 givenname: Qing surname: Li fullname: Li, Qing – sequence: 3 givenname: Qinghui surname: Sun fullname: Sun, Qinghui – sequence: 4 givenname: Xintong surname: Wang fullname: Wang, Xintong |
| BookMark | eNotjEtOwzAUAA0Cibb0ArDxBVz87NiJ2ZWIn1RakALb6iWxkUsaV04C9PZ8V7OZmTE5akNrCTkDPgPg5uLKv-Zhu5sJDtmMcy7ggIxByUxLnRhxSEZCpooZqfQJmXbd5tsBo41I-Yg8FSxfLV8u6ZzmoX0PzdD70GJDl3aIv-g_QnyjLkT6MDS9Z12FjaUFfnpaRNzYqg9xTx-jrX31056SY4dNZ6f_nJDnm-siv2OL1e19Pl8wD6nqWSWtclgZROSlsi7TtkSdcSx5hrUTpTQC6koLoSUkEkpQaLSrFaokcbKWE3L-9_XW2vUu-i3G_TqTOgUO8gt2sVJ9 |
| CODEN | IEEPAD |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/BigComp.2018.00021 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISBN | 1538636492 9781538636497 |
| EISSN | 2375-9356 |
| EndPage | 89 |
| ExternalDocumentID | 8367101 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IF 6IK 6IL 6IN AAJGR AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IPLJI M43 OCL RIE RIL |
| ID | FETCH-LOGICAL-i175t-c3e5fac9aaa0b5ef86eba680ab08adf2b3921dc622631431b15a96fd5a544f3d3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 73 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000435014000012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Aug 27 02:50:17 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i175t-c3e5fac9aaa0b5ef86eba680ab08adf2b3921dc622631431b15a96fd5a544f3d3 |
| PageCount | 8 |
| ParticipantIDs | ieee_primary_8367101 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-Jan |
| PublicationDateYYYYMMDD | 2018-01-01 |
| PublicationDate_xml | – month: 01 year: 2018 text: 2018-Jan |
| PublicationDecade | 2010 |
| PublicationTitle | International Conference on Big Data and Smart Computing |
| PublicationTitleAbbrev | BIGCOMP |
| PublicationYear | 2018 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0001969270 |
| Score | 2.0374918 |
| Snippet | Precise destination prediction of taxi trajectories can benefit many intelligent location based services such as accurate ad for passengers. Traditional... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 82 |
| SubjectTerms | Clustering algorithms Companies convolutional neural network multi-scale Neural networks Prediction algorithms Predictive models Public transportation Trajectory |
| Title | T-CONV: A Convolutional Neural Network for Multi-scale Taxi Trajectory Prediction |
| URI | https://ieeexplore.ieee.org/document/8367101 |
| WOSCitedRecordID | wos000435014000012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA61ePDkoxXf5ODRtdnN5uVNi8WD1ApVeiuzeciKtNIX-u9N0m3rwYunhEASyEyYL5P5ZhC61JQJsE4nqbYmyYV_sEIWWCDEgFcAl1IeicKPotuVg4Hq1dDVmgtjrY3BZ_Y6dONfvhnreXCVtSTl3iD6t86WEHzJ1dr4UxRXmSArXgxRrbvyLdypEL4V4iVJSAf6q4JKNCCd3f9tvYeaGyYe7q1tzD6q2dEB2l2VYsDVzWyg537Sfuq-3uBb7GcuKn2CDxySb8QmRntjD1Fx5NwmUy8ci_vwVWJvr96j8_7b7xU-bsLcJnrp3PfbD0lVLSEpPQSYJZpa5kArACAFs05yWwCXBAoiwbis8EgoNZp7vEU9SEqLlIHizjBgee6ooYeoPhqP7BHCjDgTViFOu1wDkzpPtZKagQaegThGjXBCw89lQoxhdTgnfw-fop0ggqXf4gzVZ5O5PUfbejErp5OLKMUfndCgaA |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA6lCnqq2opvc_BobPaR7K43LZaKda2wSm9lNg9ZkVb6Qv-9SbptPXjxlBBIAjMJ82Uy3wxCFyJgESgtiCeUJGFkHqzgWxYIlWAOgPYC7ojC3ShN434_6VXQ5YoLo5RywWfqynbdX74ciZl1lTXjgBuDaN46GywMfbpga609KglP_IgumTE0ad4Wb_ZW2QAuGzFJbULQXzVUnAlp1_63-Q5qrLl4uLeyMruoooZ7qLYsxoDLu1lHzxlpPaWv1_gGm5nz8kTBB7bpN1zj4r2xAanYsW7JxKhH4Qy-Cmws1rtz33-bvezXjZ3bQC_tu6zVIWW9BFIYEDAlIlBMg0gAgOZM6ZirHHhMIacxSO3nBgt5UnCDuAIDk7zcY5BwLRkYcepABvuoOhwN1QHCjGppV6Fa6FAAi0XoiSQWDARwH6JDVLcSGnwuUmIMSuEc_T18jrY62WN30L1PH47RtlXHwotxgqrT8Uydok0xnxaT8ZnT6A8ihaOv |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=International+Conference+on+Big+Data+and+Smart+Computing&rft.atitle=T-CONV%3A+A+Convolutional+Neural+Network+for+Multi-scale+Taxi+Trajectory+Prediction&rft.au=Lv%2C+Jianming&rft.au=Li%2C+Qing&rft.au=Sun%2C+Qinghui&rft.au=Wang%2C+Xintong&rft.date=2018-01-01&rft.pub=IEEE&rft.eissn=2375-9356&rft.spage=82&rft.epage=89&rft_id=info:doi/10.1109%2FBigComp.2018.00021&rft.externalDocID=8367101 |