Compute Pairwise Manhattan Distance and Pearson Correlation Coefficient of Data Points with GPU
Graphics processing units (GPUs) are powerful computational devices tailored towards the needs of the 3-D gaming industry for high-performance, real-time graphics engines. Nvidia Corporation released a new generation of GPUs designed for general-purpose computing in 2006, and it released a GPU progr...
Saved in:
| Published in: | SNPD 2009 : 10th ACIS International Conference on Software Engineering, Artificial Intelligences, Networking and Parallel Distributed Computing : proceedings : 27-29 May 2009 Daegu, Korea pp. 501 - 506 |
|---|---|
| Main Authors: | , , , |
| Format: | Conference Proceeding |
| Language: | English |
| Published: |
IEEE
01.05.2009
|
| Subjects: | |
| ISBN: | 0769536425, 9780769536422 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Graphics processing units (GPUs) are powerful computational devices tailored towards the needs of the 3-D gaming industry for high-performance, real-time graphics engines. Nvidia Corporation released a new generation of GPUs designed for general-purpose computing in 2006, and it released a GPU programming language called CUDA in 2007. The DNA microarray technology is a high throughput tool for assaying mRNA abundance in cell samples. In data analysis, scientists often apply hierarchical clustering of the genes, where a fundamental operation is to calculate all pairwise distances. If there are n genes, it takes O(n^2) time. In this work, GPUs and the CUDA language are used to calculate pairwise distances. For Manhattan distance, GPU/CUDA achieves a 40 to 90 times speed-up compared to the central processing unit implementation; for Pearson correlation coefficient, the speed-up is 28 to 38 times. |
|---|---|
| AbstractList | Graphics processing units (GPUs) are powerful computational devices tailored towards the needs of the 3-D gaming industry for high-performance, real-time graphics engines. Nvidia Corporation released a new generation of GPUs designed for general-purpose computing in 2006, and it released a GPU programming language called CUDA in 2007. The DNA microarray technology is a high throughput tool for assaying mRNA abundance in cell samples. In data analysis, scientists often apply hierarchical clustering of the genes, where a fundamental operation is to calculate all pairwise distances. If there are n genes, it takes O(n^2) time. In this work, GPUs and the CUDA language are used to calculate pairwise distances. For Manhattan distance, GPU/CUDA achieves a 40 to 90 times speed-up compared to the central processing unit implementation; for Pearson correlation coefficient, the speed-up is 28 to 38 times. |
| Author | Desoky, A.H. Rouchka, E.C. Ming Ouyang Dar-Jen Chang |
| Author_xml | – sequence: 1 surname: Dar-Jen Chang fullname: Dar-Jen Chang organization: Comput. Eng. & Comput. Sci. Dept., Univ. of Louisville, Louisville, KY, USA – sequence: 2 givenname: A.H. surname: Desoky fullname: Desoky, A.H. organization: Comput. Eng. & Comput. Sci. Dept., Univ. of Louisville, Louisville, KY, USA – sequence: 3 surname: Ming Ouyang fullname: Ming Ouyang organization: Comput. Eng. & Comput. Sci. Dept., Univ. of Louisville, Louisville, KY, USA – sequence: 4 givenname: E.C. surname: Rouchka fullname: Rouchka, E.C. organization: Comput. Eng. & Comput. Sci. Dept., Univ. of Louisville, Louisville, KY, USA |
| BookMark | eNotjEtLw0AUhQe0oKnduXMzfyB13sksJdEqVA1o1-VmckNH2knJjBT_vfFxNt95wMnIeRgCEnLN2ZJzZm_fXpp6KRizS6nOSMYKY7U0SugZyX5qy7gpzAVZxPjBJplpN_KSbKvhcPxMSBvw48lHpM8QdpASBFr7OMEhhdDRBmGMQ6DVMI64h-R_Pfa9dx5DokNPa0hAm8GHFOnJpx1dNZsrMuthH3HxzznZPNy_V4_5-nX1VN2tc88LnXInmGpLBp0oFSJvQbaml8Bd63ThDO9KabpWWqUEK8Bx2xmlrYBeM5wyk3Ny8_frEXF7HP0Bxq-tFqUxvJTfAYhVog |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/SNPD.2009.34 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE/IET Electronic Library IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library (IEL) (UW System Shared) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EndPage | 506 |
| ExternalDocumentID | 5286618 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IF 6IK 6IL 6IN AAJGR AARBI AAWTH ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK IERZE OCL RIB RIC RIE RIL |
| ID | FETCH-LOGICAL-i175t-c204b80ad284ee1ba3b6f3a1cbc57c61d836db3944207ac19d64592af50e7ac03 |
| IEDL.DBID | RIE |
| ISBN | 0769536425 9780769536422 |
| ISICitedReferencesCount | 47 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000275031800085&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Aug 27 01:37:22 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| LCCN | 2009901676 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i175t-c204b80ad284ee1ba3b6f3a1cbc57c61d836db3944207ac19d64592af50e7ac03 |
| PageCount | 6 |
| ParticipantIDs | ieee_primary_5286618 |
| PublicationCentury | 2000 |
| PublicationDate | 2009-May |
| PublicationDateYYYYMMDD | 2009-05-01 |
| PublicationDate_xml | – month: 05 year: 2009 text: 2009-May |
| PublicationDecade | 2000 |
| PublicationTitle | SNPD 2009 : 10th ACIS International Conference on Software Engineering, Artificial Intelligences, Networking and Parallel Distributed Computing : proceedings : 27-29 May 2009 Daegu, Korea |
| PublicationTitleAbbrev | SNPD |
| PublicationYear | 2009 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0000669563 |
| Score | 1.6171287 |
| Snippet | Graphics processing units (GPUs) are powerful computational devices tailored towards the needs of the 3-D gaming industry for high-performance, real-time... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 501 |
| SubjectTerms | Bioinformatics Central Processing Unit Computer networks Concurrent computing Data analysis Distributed computing DNA Graphics hierarchical clustering Parallel and distributed computation Power engineering computing Sequences similarity and dissimilarity metrics |
| Title | Compute Pairwise Manhattan Distance and Pearson Correlation Coefficient of Data Points with GPU |
| URI | https://ieeexplore.ieee.org/document/5286618 |
| WOSCitedRecordID | wos000275031800085&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV27TsMwFL0qFQNTgRbxlgdGQh07cZy5pbBQRYJK3SrbuRZZEtSm8PvYSVoYWNhsD5FlOz7H93UA7ozmDkeNDgQzNIhyowLFJA0c2bAOUWIpolZsIpnP5XKZZj243-fCIGITfIYPvtn48vPKbL2pbBwz6eBEHsBBkog2V2tvT3HQ6ag-b1_m3ifpDmNXYGfXZ_vA93T8Os-mbbVKL5n8S1ilwZXZ4H8zOobRT4IeyfbQcwI9LE9hsFNoIN0PO4RVN0QyVay_ig2SF1W-q9oxQjL1zNF_SJU5cTejZ95k4sU62vA418amvoSbAaksmapakawqynpDvPWWPGWLESxmj2-T56CTVAgKxxPqwDAaaUlV7lAJMdSKa2G5Co02cWJEmEsucu2TZRlNlAnT3BebYcrGFF2f8jPol1WJ50ASrTGiNgpTpSOLTOqIWysxdk9OLbi4gKFfr9VHWzVj1S3V5d_DV3DU-ml8KOE19Ov1Fm_g0HzWxWZ922z1N93Wpy4 |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8MgHCVzmuhp6mb8loNH6yjQlp4354xb08Qt2a0BCrGX1myd_vtC21UPXrwBh4YA5T1-Xw-AeymIwVEpHB9L5NBUcodjhhxDNrRBFI_5tBabCKKIrVZh3AEPbS6MUqoKPlOPtln58tNCbq2pbOhhZuCE7YF9j1KM6myt1qJiwNOQfVK_za1X0hzHpsTOro_b0Pdw-BbF47pepRVN_iWtUiHLpPe_OR2DwU-KHoxb8DkBHZWfgt5OowE2v2wfJM0QjHm2_so2Cs55_s5Lwwnh2HJH-yGep9DcjZZ7w5GV66gD5ExbVRUmzAxgoeGYlxzGRZaXG2jtt_A5Xg7AcvK0GE2dRlTByQxTKB2JERUM8dTgklKu4ET4mnBXCukF0ndTRvxU2HRZjAIu3TC15WYw1x5Spo_IGejmRa7OAQyEUBRp6oZcUK0wE5RozZRnHp3CJ_4F6Nv1Sj7quhlJs1SXfw_fgcPpYj5LZi_R6xU4qr02NrDwGnTL9VbdgAP5WWab9W217d_AGqp1 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=SNPD+2009+%3A+10th+ACIS+International+Conference+on+Software+Engineering%2C+Artificial+Intelligences%2C+Networking+and+Parallel+Distributed+Computing+%3A+proceedings+%3A+27-29+May+2009+Daegu%2C+Korea&rft.atitle=Compute+Pairwise+Manhattan+Distance+and+Pearson+Correlation+Coefficient+of+Data+Points+with+GPU&rft.au=Dar-Jen+Chang&rft.au=Desoky%2C+A.H.&rft.au=Ming+Ouyang&rft.au=Rouchka%2C+E.C.&rft.date=2009-05-01&rft.pub=IEEE&rft.isbn=9780769536422&rft.spage=501&rft.epage=506&rft_id=info:doi/10.1109%2FSNPD.2009.34&rft.externalDocID=5286618 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9780769536422/lc.gif&client=summon&freeimage=true |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9780769536422/mc.gif&client=summon&freeimage=true |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9780769536422/sc.gif&client=summon&freeimage=true |

