Compute Pairwise Manhattan Distance and Pearson Correlation Coefficient of Data Points with GPU
Graphics processing units (GPUs) are powerful computational devices tailored towards the needs of the 3-D gaming industry for high-performance, real-time graphics engines. Nvidia Corporation released a new generation of GPUs designed for general-purpose computing in 2006, and it released a GPU progr...
Uložené v:
| Vydané v: | SNPD 2009 : 10th ACIS International Conference on Software Engineering, Artificial Intelligences, Networking and Parallel Distributed Computing : proceedings : 27-29 May 2009 Daegu, Korea s. 501 - 506 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Konferenčný príspevok.. |
| Jazyk: | English |
| Vydavateľské údaje: |
IEEE
01.05.2009
|
| Predmet: | |
| ISBN: | 0769536425, 9780769536422 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Graphics processing units (GPUs) are powerful computational devices tailored towards the needs of the 3-D gaming industry for high-performance, real-time graphics engines. Nvidia Corporation released a new generation of GPUs designed for general-purpose computing in 2006, and it released a GPU programming language called CUDA in 2007. The DNA microarray technology is a high throughput tool for assaying mRNA abundance in cell samples. In data analysis, scientists often apply hierarchical clustering of the genes, where a fundamental operation is to calculate all pairwise distances. If there are n genes, it takes O(n^2) time. In this work, GPUs and the CUDA language are used to calculate pairwise distances. For Manhattan distance, GPU/CUDA achieves a 40 to 90 times speed-up compared to the central processing unit implementation; for Pearson correlation coefficient, the speed-up is 28 to 38 times. |
|---|---|
| AbstractList | Graphics processing units (GPUs) are powerful computational devices tailored towards the needs of the 3-D gaming industry for high-performance, real-time graphics engines. Nvidia Corporation released a new generation of GPUs designed for general-purpose computing in 2006, and it released a GPU programming language called CUDA in 2007. The DNA microarray technology is a high throughput tool for assaying mRNA abundance in cell samples. In data analysis, scientists often apply hierarchical clustering of the genes, where a fundamental operation is to calculate all pairwise distances. If there are n genes, it takes O(n^2) time. In this work, GPUs and the CUDA language are used to calculate pairwise distances. For Manhattan distance, GPU/CUDA achieves a 40 to 90 times speed-up compared to the central processing unit implementation; for Pearson correlation coefficient, the speed-up is 28 to 38 times. |
| Author | Desoky, A.H. Rouchka, E.C. Ming Ouyang Dar-Jen Chang |
| Author_xml | – sequence: 1 surname: Dar-Jen Chang fullname: Dar-Jen Chang organization: Comput. Eng. & Comput. Sci. Dept., Univ. of Louisville, Louisville, KY, USA – sequence: 2 givenname: A.H. surname: Desoky fullname: Desoky, A.H. organization: Comput. Eng. & Comput. Sci. Dept., Univ. of Louisville, Louisville, KY, USA – sequence: 3 surname: Ming Ouyang fullname: Ming Ouyang organization: Comput. Eng. & Comput. Sci. Dept., Univ. of Louisville, Louisville, KY, USA – sequence: 4 givenname: E.C. surname: Rouchka fullname: Rouchka, E.C. organization: Comput. Eng. & Comput. Sci. Dept., Univ. of Louisville, Louisville, KY, USA |
| BookMark | eNotjEtLw0AUhQe0oKnduXMzfyB13sksJdEqVA1o1-VmckNH2knJjBT_vfFxNt95wMnIeRgCEnLN2ZJzZm_fXpp6KRizS6nOSMYKY7U0SugZyX5qy7gpzAVZxPjBJplpN_KSbKvhcPxMSBvw48lHpM8QdpASBFr7OMEhhdDRBmGMQ6DVMI64h-R_Pfa9dx5DokNPa0hAm8GHFOnJpx1dNZsrMuthH3HxzznZPNy_V4_5-nX1VN2tc88LnXInmGpLBp0oFSJvQbaml8Bd63ThDO9KabpWWqUEK8Bx2xmlrYBeM5wyk3Ny8_frEXF7HP0Bxq-tFqUxvJTfAYhVog |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/SNPD.2009.34 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EndPage | 506 |
| ExternalDocumentID | 5286618 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IF 6IK 6IL 6IN AAJGR AARBI AAWTH ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK IERZE OCL RIB RIC RIE RIL |
| ID | FETCH-LOGICAL-i175t-c204b80ad284ee1ba3b6f3a1cbc57c61d836db3944207ac19d64592af50e7ac03 |
| IEDL.DBID | RIE |
| ISBN | 0769536425 9780769536422 |
| ISICitedReferencesCount | 47 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000275031800085&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Aug 27 01:37:22 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| LCCN | 2009901676 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i175t-c204b80ad284ee1ba3b6f3a1cbc57c61d836db3944207ac19d64592af50e7ac03 |
| PageCount | 6 |
| ParticipantIDs | ieee_primary_5286618 |
| PublicationCentury | 2000 |
| PublicationDate | 2009-May |
| PublicationDateYYYYMMDD | 2009-05-01 |
| PublicationDate_xml | – month: 05 year: 2009 text: 2009-May |
| PublicationDecade | 2000 |
| PublicationTitle | SNPD 2009 : 10th ACIS International Conference on Software Engineering, Artificial Intelligences, Networking and Parallel Distributed Computing : proceedings : 27-29 May 2009 Daegu, Korea |
| PublicationTitleAbbrev | SNPD |
| PublicationYear | 2009 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0000669563 |
| Score | 1.6171287 |
| Snippet | Graphics processing units (GPUs) are powerful computational devices tailored towards the needs of the 3-D gaming industry for high-performance, real-time... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 501 |
| SubjectTerms | Bioinformatics Central Processing Unit Computer networks Concurrent computing Data analysis Distributed computing DNA Graphics hierarchical clustering Parallel and distributed computation Power engineering computing Sequences similarity and dissimilarity metrics |
| Title | Compute Pairwise Manhattan Distance and Pearson Correlation Coefficient of Data Points with GPU |
| URI | https://ieeexplore.ieee.org/document/5286618 |
| WOSCitedRecordID | wos000275031800085&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED6VioGpQIt4ywMjobHdxMncUlioIkGlbpWfIkuC2hT-Pr4kDQwsbLaHyDon-c73-D6AO-mMESqlgeMTG0yoUYHCO4-gjmsWG0uprsUmxGKRrFZp1oP7rhfGWlsXn9kHHNa5fFPqHYbKxhFLPJwkB3AgRNz0anXxFA-d3tXnzc0cc5L-ZWwJdvZz1hW-p-PXRTZr2CpRMvmXsEqNK_PB_3Z0DKOfBj2SddBzAj1bnMJgr9BA2g92COt2iWQy33zlW0teZPEuK-8Rkhl6jvggWRji_4zoeZMpinU05XF-bGt-Cb8DUjoyk5UkWZkX1ZZg9JY8ZcsRLOePb9PnoJVUCHLvJ1SBZuFEJaE0HpWspUpyFTsuqVY6EjqmJuGxUdgsy0IhNU0Nks0w6aLQ-nnIz6BflIU9B6IVE5p6u8s0RQYcybTG82Um4ip14gKGaK_1R8OasW5Ndfn38hUcNXkaLCW8hn612dkbONSfVb7d3NZH_Q3gwKfj |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV27TsMwFLVKQYKpQIt444GR0NjOc24pRbRRJFqpW-RXRJYEtSn8Pr5JGhhY2GwPkXWd5FzfxzkI3fNUKV-ExEqZoy2HKGEJuPP4JGWSekoTIiuxCT-KgtUqjDvooe2F0VpXxWf6EYZVLl8VcguhsqFLAwMnwR7adx2H2nW3VhtRMeBpnH1W380hK2lex4ZiZzenbel7OHyL4nHNVwmiyb-kVSpkmfT-t6djNPhp0cNxCz4nqKPzU9TbaTTg5pPto6RZwjHP1l_ZRuM5z995aXxCPAbfER7Ec4XNvxF8bzwCuY66QM6MdcUwYXaAixSPeclxXGR5ucEQv8XP8XKAlpOnxWhqNaIKVmY8hdKS1HZEYHNlcElrIjgTXso4kUK6vvSICpinBLTLUtvnkoQK6GYoT11bm7nNzlA3L3J9jrAU1JfE2J2HIXDgcColnDBVLhNh6l-gPtgr-ah5M5LGVJd_L9-hw-liPktmL9HrFTqqszZQWHiNuuV6q2_Qgfwss836tjr2b81kqyo |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=SNPD+2009+%3A+10th+ACIS+International+Conference+on+Software+Engineering%2C+Artificial+Intelligences%2C+Networking+and+Parallel+Distributed+Computing+%3A+proceedings+%3A+27-29+May+2009+Daegu%2C+Korea&rft.atitle=Compute+Pairwise+Manhattan+Distance+and+Pearson+Correlation+Coefficient+of+Data+Points+with+GPU&rft.au=Dar-Jen+Chang&rft.au=Desoky%2C+A.H.&rft.au=Ming+Ouyang&rft.au=Rouchka%2C+E.C.&rft.date=2009-05-01&rft.pub=IEEE&rft.isbn=9780769536422&rft.spage=501&rft.epage=506&rft_id=info:doi/10.1109%2FSNPD.2009.34&rft.externalDocID=5286618 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9780769536422/lc.gif&client=summon&freeimage=true |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9780769536422/mc.gif&client=summon&freeimage=true |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9780769536422/sc.gif&client=summon&freeimage=true |

